{"title":"克尔时空引力扰动的新量纲 II:重新审视施瓦兹柴尔德的线性稳定性","authors":"Gabriele Benomio","doi":"10.1007/s00205-024-02036-1","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new proof of linear stability of the Schwarzschild solution to gravitational perturbations. Our approach employs the system of linearised gravity in the new geometric gauge of Benomio (A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602), specialised to the <span>\\(|a|=0\\)</span> case. The proof fundamentally relies on the novel structure of the transport equations in the system. Indeed, while exploiting the well-known decoupling of two gauge invariant linearised quantities into spin <span>\\(\\pm 2\\)</span> Teukolsky equations, we make enhanced use of the <i>red-shifted</i> transport equations and their stabilising properties to control the gauge dependent part of the system. As a result, an <i>initial-data</i> gauge normalisation suffices to establish both orbital and <i>asymptotic</i> stability for <i>all</i> the linearised quantities in the system. The absence of future gauge normalisations is a novel element in the linear stability analysis of black hole spacetimes in geometric gauges governed by transport equations. In particular, our approach simplifies the proof of Dafermos et al. (Acta Math 222:1–214, 2019), which requires a <i>future</i> normalised (double-null) gauge to establish asymptotic stability for the full system.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02036-1.pdf","citationCount":"0","resultStr":"{\"title\":\"A New Gauge for Gravitational Perturbations of Kerr Spacetimes II: The Linear Stability of Schwarzschild Revisited\",\"authors\":\"Gabriele Benomio\",\"doi\":\"10.1007/s00205-024-02036-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a new proof of linear stability of the Schwarzschild solution to gravitational perturbations. Our approach employs the system of linearised gravity in the new geometric gauge of Benomio (A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602), specialised to the <span>\\\\(|a|=0\\\\)</span> case. The proof fundamentally relies on the novel structure of the transport equations in the system. Indeed, while exploiting the well-known decoupling of two gauge invariant linearised quantities into spin <span>\\\\(\\\\pm 2\\\\)</span> Teukolsky equations, we make enhanced use of the <i>red-shifted</i> transport equations and their stabilising properties to control the gauge dependent part of the system. As a result, an <i>initial-data</i> gauge normalisation suffices to establish both orbital and <i>asymptotic</i> stability for <i>all</i> the linearised quantities in the system. The absence of future gauge normalisations is a novel element in the linear stability analysis of black hole spacetimes in geometric gauges governed by transport equations. In particular, our approach simplifies the proof of Dafermos et al. (Acta Math 222:1–214, 2019), which requires a <i>future</i> normalised (double-null) gauge to establish asymptotic stability for the full system.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-024-02036-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02036-1\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02036-1","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了施瓦兹柴尔德解引力扰动线性稳定性的新证明。我们的方法采用了贝诺米奥(A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602)的新几何量规中的线性化引力系统,特化为\(|a|=0\)情况。证明从根本上依赖于系统中传输方程的新结构。事实上,在利用众所周知的两个量规不变线性化量解耦(decoupling)到自旋(\pm 2\) Teukolsky方程的同时,我们加强了对红移输运方程及其稳定特性的利用,以控制该系统的量规相关部分。因此,初始数据的轨则归一化足以建立系统中所有线性化量的轨道稳定性和渐近稳定性。在受输运方程支配的几何量规中,没有未来量规归一化是黑洞时空线性稳定性分析中的一个新元素。特别是,我们的方法简化了达菲莫斯等人(Acta Math 222:1-214,2019)的证明,后者需要一个未来归一化(双空)规来建立整个系统的渐近稳定性。
A New Gauge for Gravitational Perturbations of Kerr Spacetimes II: The Linear Stability of Schwarzschild Revisited
We present a new proof of linear stability of the Schwarzschild solution to gravitational perturbations. Our approach employs the system of linearised gravity in the new geometric gauge of Benomio (A new gauge for gravitational perturbations of Kerr spacetimes I: the linearised theory, 2022, https://arxiv.org/abs/2211.00602), specialised to the \(|a|=0\) case. The proof fundamentally relies on the novel structure of the transport equations in the system. Indeed, while exploiting the well-known decoupling of two gauge invariant linearised quantities into spin \(\pm 2\) Teukolsky equations, we make enhanced use of the red-shifted transport equations and their stabilising properties to control the gauge dependent part of the system. As a result, an initial-data gauge normalisation suffices to establish both orbital and asymptotic stability for all the linearised quantities in the system. The absence of future gauge normalisations is a novel element in the linear stability analysis of black hole spacetimes in geometric gauges governed by transport equations. In particular, our approach simplifies the proof of Dafermos et al. (Acta Math 222:1–214, 2019), which requires a future normalised (double-null) gauge to establish asymptotic stability for the full system.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.