利用色差公式为 CIELAB 建立多输出模型,实现可持续纺织品染色

Zheyuan Chen, Jian Liu, Jian Li, Mukun Yuan, Guangping Yu
{"title":"利用色差公式为 CIELAB 建立多输出模型,实现可持续纺织品染色","authors":"Zheyuan Chen,&nbsp;Jian Liu,&nbsp;Jian Li,&nbsp;Mukun Yuan,&nbsp;Guangping Yu","doi":"10.1007/s43684-024-00076-8","DOIUrl":null,"url":null,"abstract":"<div><p>Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00076-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing\",\"authors\":\"Zheyuan Chen,&nbsp;Jian Liu,&nbsp;Jian Li,&nbsp;Mukun Yuan,&nbsp;Guangping Yu\",\"doi\":\"10.1007/s43684-024-00076-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-024-00076-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-024-00076-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00076-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纺织品染色需要优化成分组合和工艺参数,以实现目标颜色特性。对这些因素与最终颜色之间的复杂关系进行建模具有挑战性。在这种情况下,我们提出了一种物理信息多输出回归方法,根据染色成分和工艺输入建立 CIELAB 颜色值模型。利用注意力机制和多任务学习,该模型在联合预测多种颜色输出方面优于基准方法。具体来说,Transformer 模型的注意机制捕捉到了染色成分和工艺参数之间复杂的相互作用,而多任务学习框架则利用了 CIELAB 色彩空间的 L*、a* 和 b* 维度之间的内在相关性。此外,还通过物理信息损失函数将物理知识与 CMC 色差公式结合起来。该损失函数与注意机制一起,使模型能够学习染色过程变量与最终颜色输出之间的细微关系,从而提高整体预测精度。这降低了试错成本和资源浪费,通过最大限度地减少水和能源消耗以及化学品排放,促进了环境的可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging multi-output modelling for CIELAB using colour difference formula towards sustainable textile dyeing

Textile dyeing requires optimizing combinations of ingredients and process parameters to achieve target colour properties. Modelling the complex relationships between these factors and the resulting colour is challenging. In this case, a physics-informed approach for multi-output regression to model CIELAB colour values from dyeing ingredient and process inputs is proposed. Leveraging attention mechanisms and multi-task learning, the model outperforms baseline methods at predicting multiple colour outputs jointly. Specifically, the Transformer model’s attention mechanism captures the complex interactions between dyeing ingredients and process parameters, while the multi-task learning framework exploits the intrinsic correlations among the L*, a*, and b* dimensions of the CIELAB colour space. In addition, the incorporation of physical knowledge through a physics-informed loss function integrates the CMC colour difference formula. This loss function, along with the attention mechanisms, enables the model to learn the nuanced relationships between the dyeing process variables and the final colour output, thereby improving the overall prediction accuracy. This reduces trial-and-error costs and resource waste, contributing to environmental sustainability by minimizing water and energy consumption and chemical emissions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信