S. A. Garakhin, A. Yu. Lopatin, A. N. Nechay, A. A. Perekalov, A. E. Pestov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo
{"title":"用于 7-30 纳米范围 X 射线镜面光谱仪的色散元件","authors":"S. A. Garakhin, A. Yu. Lopatin, A. N. Nechay, A. A. Perekalov, A. E. Pestov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo","doi":"10.1134/S1063784224060136","DOIUrl":null,"url":null,"abstract":"<p>Multilayer interference structures acting as dispersion elements for a mirror spectrometer for a wavelength range of 7–30 nm have been calculated and synthesized. Three elements are implemented: for the range λ = 7–12 nm – multilayer structure Mo/B<sub>4</sub>C (number of periods <i>N</i> = 60, period thickness <i>d</i> = 6<i>.</i>5 nm); for the range λ = 11–18 nm – Mo/Be (<i>N</i> = 50; <i>d</i> = 9<i>.</i>83 nm) and for the range λ = 17–30 nm – Be/Si/Al (<i>N</i> = 40; <i>d</i> = 18<i>.</i>2 nm). For the entire spectral range, an efficiency of more than 10% was obtained at a wavelength resolution of 0<i>.</i>15–1<i>.</i>0 nm.</p>","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"69 6","pages":"1568 - 1574"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dispersion Elements for X-ray Mirror Spectrometer on a Range of 7–30 nm\",\"authors\":\"S. A. Garakhin, A. Yu. Lopatin, A. N. Nechay, A. A. Perekalov, A. E. Pestov, N. N. Salashchenko, N. N. Tsybin, N. I. Chkhalo\",\"doi\":\"10.1134/S1063784224060136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multilayer interference structures acting as dispersion elements for a mirror spectrometer for a wavelength range of 7–30 nm have been calculated and synthesized. Three elements are implemented: for the range λ = 7–12 nm – multilayer structure Mo/B<sub>4</sub>C (number of periods <i>N</i> = 60, period thickness <i>d</i> = 6<i>.</i>5 nm); for the range λ = 11–18 nm – Mo/Be (<i>N</i> = 50; <i>d</i> = 9<i>.</i>83 nm) and for the range λ = 17–30 nm – Be/Si/Al (<i>N</i> = 40; <i>d</i> = 18<i>.</i>2 nm). For the entire spectral range, an efficiency of more than 10% was obtained at a wavelength resolution of 0<i>.</i>15–1<i>.</i>0 nm.</p>\",\"PeriodicalId\":783,\"journal\":{\"name\":\"Technical Physics\",\"volume\":\"69 6\",\"pages\":\"1568 - 1574\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063784224060136\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063784224060136","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dispersion Elements for X-ray Mirror Spectrometer on a Range of 7–30 nm
Multilayer interference structures acting as dispersion elements for a mirror spectrometer for a wavelength range of 7–30 nm have been calculated and synthesized. Three elements are implemented: for the range λ = 7–12 nm – multilayer structure Mo/B4C (number of periods N = 60, period thickness d = 6.5 nm); for the range λ = 11–18 nm – Mo/Be (N = 50; d = 9.83 nm) and for the range λ = 17–30 nm – Be/Si/Al (N = 40; d = 18.2 nm). For the entire spectral range, an efficiency of more than 10% was obtained at a wavelength resolution of 0.15–1.0 nm.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.