用于 PDE 的无监督随机量子网络

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Josh Dees, Antoine Jacquier, Sylvain Laizet
{"title":"用于 PDE 的无监督随机量子网络","authors":"Josh Dees,&nbsp;Antoine Jacquier,&nbsp;Sylvain Laizet","doi":"10.1007/s11128-024-04537-0","DOIUrl":null,"url":null,"abstract":"<div><p>Classical Physics-informed neural networks (PINNs) approximate solutions to PDEs with the help of deep neural networks trained to satisfy the differential operator and the relevant boundary conditions. We revisit this idea in the quantum computing realm, using parameterised random quantum circuits as trial solutions. We further adapt recent PINN-based techniques to our quantum setting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson, the Heat and the Hamilton–Jacobi–Bellman equations, which are ubiquitous in most areas of science. On the theoretical side, we develop a complexity analysis of this approach, and show numerically that random quantum networks can outperform more traditional quantum networks as well as random classical networks.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04537-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Unsupervised random quantum networks for PDEs\",\"authors\":\"Josh Dees,&nbsp;Antoine Jacquier,&nbsp;Sylvain Laizet\",\"doi\":\"10.1007/s11128-024-04537-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Classical Physics-informed neural networks (PINNs) approximate solutions to PDEs with the help of deep neural networks trained to satisfy the differential operator and the relevant boundary conditions. We revisit this idea in the quantum computing realm, using parameterised random quantum circuits as trial solutions. We further adapt recent PINN-based techniques to our quantum setting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson, the Heat and the Hamilton–Jacobi–Bellman equations, which are ubiquitous in most areas of science. On the theoretical side, we develop a complexity analysis of this approach, and show numerically that random quantum networks can outperform more traditional quantum networks as well as random classical networks.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-024-04537-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04537-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04537-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

经典物理信息神经网络(PINNs)借助经过训练的深度神经网络来近似求解 PDE,以满足微分算子和相关边界条件。我们利用参数化随机量子电路作为试解,在量子计算领域重新审视了这一想法。我们进一步将基于 PINN 的最新技术,特别是高斯平滑技术,应用到我们的量子环境中。我们的分析集中在泊松方程、热方程和汉密尔顿-雅各比-贝尔曼方程上,这些方程在大多数科学领域都无处不在。在理论方面,我们对这种方法进行了复杂性分析,并用数字表明随机量子网络的性能优于传统量子网络和随机经典网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised random quantum networks for PDEs

Classical Physics-informed neural networks (PINNs) approximate solutions to PDEs with the help of deep neural networks trained to satisfy the differential operator and the relevant boundary conditions. We revisit this idea in the quantum computing realm, using parameterised random quantum circuits as trial solutions. We further adapt recent PINN-based techniques to our quantum setting, in particular Gaussian smoothing. Our analysis concentrates on the Poisson, the Heat and the Hamilton–Jacobi–Bellman equations, which are ubiquitous in most areas of science. On the theoretical side, we develop a complexity analysis of this approach, and show numerically that random quantum networks can outperform more traditional quantum networks as well as random classical networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信