满足广义零条件的非线性波方程的全局稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
John Anderson, Samuel Zbarsky
{"title":"满足广义零条件的非线性波方程的全局稳定性","authors":"John Anderson,&nbsp;Samuel Zbarsky","doi":"10.1007/s00205-024-02025-4","DOIUrl":null,"url":null,"abstract":"<div><p>We prove global stability for nonlinear wave equations satisfying a generalized null condition. The generalized null condition is made to allow for null forms whose coefficients have bounded <span>\\(C^k\\)</span> norms. We prove both the pointwise decay and improved decay of good derivatives using bilinear energy estimates and duality arguments. Combining this strategy with the <span>\\(r^p\\)</span> estimates of Dafermos–Rodnianski then allows us to prove the global stability. The proof requires analyzing the geometry of intersecting null hypersurfaces adapted to solutions of wave equations.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Stability for Nonlinear Wave Equations Satisfying a Generalized Null Condition\",\"authors\":\"John Anderson,&nbsp;Samuel Zbarsky\",\"doi\":\"10.1007/s00205-024-02025-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove global stability for nonlinear wave equations satisfying a generalized null condition. The generalized null condition is made to allow for null forms whose coefficients have bounded <span>\\\\(C^k\\\\)</span> norms. We prove both the pointwise decay and improved decay of good derivatives using bilinear energy estimates and duality arguments. Combining this strategy with the <span>\\\\(r^p\\\\)</span> estimates of Dafermos–Rodnianski then allows us to prove the global stability. The proof requires analyzing the geometry of intersecting null hypersurfaces adapted to solutions of wave equations.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02025-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02025-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了满足广义空条件的非线性波方程的全局稳定性。广义空条件允许系数具有有界 \(C^k\) 规范的空形式。我们利用双线性能量估计和对偶论证证明了好导数的点式衰减和改进衰减。将这一策略与 Dafermos-Rodnianski 的 \(r^p\) 估计相结合,我们就能证明全局稳定性。证明需要分析与波方程解相适应的相交空超曲面的几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Global Stability for Nonlinear Wave Equations Satisfying a Generalized Null Condition

Global Stability for Nonlinear Wave Equations Satisfying a Generalized Null Condition

We prove global stability for nonlinear wave equations satisfying a generalized null condition. The generalized null condition is made to allow for null forms whose coefficients have bounded \(C^k\) norms. We prove both the pointwise decay and improved decay of good derivatives using bilinear energy estimates and duality arguments. Combining this strategy with the \(r^p\) estimates of Dafermos–Rodnianski then allows us to prove the global stability. The proof requires analyzing the geometry of intersecting null hypersurfaces adapted to solutions of wave equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信