{"title":"递归和前馈量子神经网络中的统计在线学习","authors":"S. V. Zuev","doi":"10.1134/S1064562423701557","DOIUrl":null,"url":null,"abstract":"<p>For adaptive artificial intelligence systems, the question of the possibility of online learning is especially important, since such training provides adaptation. The purpose of the work is to consider methods of quantum machine online learning for the two most common architectures of quantum neural networks: feedforward and recurrent. The work uses the quantumz module available on PyPI to emulate quantum computing and create artificial quantum neural networks. In addition, the genser module is used to transform data dimensions, which provides reversible transformation of dimensions without loss of information. The data for the experiments are taken from open sources. The paper implements the machine learning method without optimization, proposed by the author earlier. Online learning algorithms for recurrent and feedforward quantum neural network are presented and experimentally confirmed. The proposed learning algorithms can be used as data science tools, as well as a part of adaptive intelligent control systems. The developed software can fully unleash its potential only on quantum computers, but, in the case of a small number of quantum registers, it can also be used in systems that emulate quantum computing, or in photonic computers.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 2 supplement","pages":"S317 - S324"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Online Learning in Recurrent and Feedforward Quantum Neural Networks\",\"authors\":\"S. V. Zuev\",\"doi\":\"10.1134/S1064562423701557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For adaptive artificial intelligence systems, the question of the possibility of online learning is especially important, since such training provides adaptation. The purpose of the work is to consider methods of quantum machine online learning for the two most common architectures of quantum neural networks: feedforward and recurrent. The work uses the quantumz module available on PyPI to emulate quantum computing and create artificial quantum neural networks. In addition, the genser module is used to transform data dimensions, which provides reversible transformation of dimensions without loss of information. The data for the experiments are taken from open sources. The paper implements the machine learning method without optimization, proposed by the author earlier. Online learning algorithms for recurrent and feedforward quantum neural network are presented and experimentally confirmed. The proposed learning algorithms can be used as data science tools, as well as a part of adaptive intelligent control systems. The developed software can fully unleash its potential only on quantum computers, but, in the case of a small number of quantum registers, it can also be used in systems that emulate quantum computing, or in photonic computers.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 2 supplement\",\"pages\":\"S317 - S324\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701557\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701557","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Statistical Online Learning in Recurrent and Feedforward Quantum Neural Networks
For adaptive artificial intelligence systems, the question of the possibility of online learning is especially important, since such training provides adaptation. The purpose of the work is to consider methods of quantum machine online learning for the two most common architectures of quantum neural networks: feedforward and recurrent. The work uses the quantumz module available on PyPI to emulate quantum computing and create artificial quantum neural networks. In addition, the genser module is used to transform data dimensions, which provides reversible transformation of dimensions without loss of information. The data for the experiments are taken from open sources. The paper implements the machine learning method without optimization, proposed by the author earlier. Online learning algorithms for recurrent and feedforward quantum neural network are presented and experimentally confirmed. The proposed learning algorithms can be used as data science tools, as well as a part of adaptive intelligent control systems. The developed software can fully unleash its potential only on quantum computers, but, in the case of a small number of quantum registers, it can also be used in systems that emulate quantum computing, or in photonic computers.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.