量子振荡器系统单激发能量特征状态的纠缠边界

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Houssam Abdul-Rahman, Robert Sims, Günter Stolz
{"title":"量子振荡器系统单激发能量特征状态的纠缠边界","authors":"Houssam Abdul-Rahman,&nbsp;Robert Sims,&nbsp;Günter Stolz","doi":"10.1007/s11005-024-01863-3","DOIUrl":null,"url":null,"abstract":"<div><p>We provide an analytic method for estimating the entanglement of the non-Gaussian energy eigenstates of disordered harmonic oscillator systems. We invoke the explicit formulas of the eigenstates of the oscillator systems to establish bounds for their <span>\\(\\epsilon \\)</span>-Rényi entanglement entropy <span>\\(\\epsilon \\in (0,1)\\)</span>. Our methods result in a logarithmically corrected area law for the entanglement of eigenstates, corresponding to one excitation, of the disordered harmonic oscillator systems.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement bounds for single-excitation energy eigenstates of quantum oscillator systems\",\"authors\":\"Houssam Abdul-Rahman,&nbsp;Robert Sims,&nbsp;Günter Stolz\",\"doi\":\"10.1007/s11005-024-01863-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide an analytic method for estimating the entanglement of the non-Gaussian energy eigenstates of disordered harmonic oscillator systems. We invoke the explicit formulas of the eigenstates of the oscillator systems to establish bounds for their <span>\\\\(\\\\epsilon \\\\)</span>-Rényi entanglement entropy <span>\\\\(\\\\epsilon \\\\in (0,1)\\\\)</span>. Our methods result in a logarithmically corrected area law for the entanglement of eigenstates, corresponding to one excitation, of the disordered harmonic oscillator systems.\\n</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01863-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01863-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一种分析方法来估计无序谐波振荡器系统的非高斯能量特征状态的纠缠。我们引用振荡器系统特征状态的明确公式来建立它们的(\epsilon \)-雷尼纠缠熵(\epsilon \ in (0,1)\)的边界。我们的方法为无序谐振子系统中对应于一个激励的特征状态的纠缠提供了一个对数校正面积定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entanglement bounds for single-excitation energy eigenstates of quantum oscillator systems

We provide an analytic method for estimating the entanglement of the non-Gaussian energy eigenstates of disordered harmonic oscillator systems. We invoke the explicit formulas of the eigenstates of the oscillator systems to establish bounds for their \(\epsilon \)-Rényi entanglement entropy \(\epsilon \in (0,1)\). Our methods result in a logarithmically corrected area law for the entanglement of eigenstates, corresponding to one excitation, of the disordered harmonic oscillator systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信