拓扑优化外墙支架:含碳量、结构和残余应力分析

Kostas Grigoriadis, John Bouchard, Michael Herrmann
{"title":"拓扑优化外墙支架:含碳量、结构和残余应力分析","authors":"Kostas Grigoriadis,&nbsp;John Bouchard,&nbsp;Michael Herrmann","doi":"10.1007/s44223-024-00063-2","DOIUrl":null,"url":null,"abstract":"<div><p>The research investigates the topological optimisation of the metal brackets that connect curtain wall panelling to the floor slabs of a building. As is typically the case with standard building components, the brackets are overdesigned with higher load margins than real applied loads. Optimising them results in reduced mass and a more evenly spread stress distribution. Correspondingly, the question that the project asks is whether the optimised designs have a comparable structural performance to the standard bracketry used in construction, and a lower embodied carbon. To answer this, several optimisations of a standard facade bracket are performed, resulting in a total of six converged design options, with three of them progressed for fabrication. The manufactured designs are then horizontal and vertical load and residual stress tested to assess their performance, and an embodied carbon analysis is performed to calculate the corresponding emissions for raw material extraction, processing, and component fabrication. The results indicate the presence of compressive yield magnitude residual stresses, and that structural performance is comparable to a standard bracket, but embodied carbon is in most cases higher. The paper concludes with a discussion of the findings, and possible next steps in the optimisation, structural testing, and embodied carbon analysis workflow.</p></div>","PeriodicalId":72270,"journal":{"name":"Architectural intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44223-024-00063-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Topologically optimised facade brackets: an embodied carbon, structural and residual stress analysis\",\"authors\":\"Kostas Grigoriadis,&nbsp;John Bouchard,&nbsp;Michael Herrmann\",\"doi\":\"10.1007/s44223-024-00063-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The research investigates the topological optimisation of the metal brackets that connect curtain wall panelling to the floor slabs of a building. As is typically the case with standard building components, the brackets are overdesigned with higher load margins than real applied loads. Optimising them results in reduced mass and a more evenly spread stress distribution. Correspondingly, the question that the project asks is whether the optimised designs have a comparable structural performance to the standard bracketry used in construction, and a lower embodied carbon. To answer this, several optimisations of a standard facade bracket are performed, resulting in a total of six converged design options, with three of them progressed for fabrication. The manufactured designs are then horizontal and vertical load and residual stress tested to assess their performance, and an embodied carbon analysis is performed to calculate the corresponding emissions for raw material extraction, processing, and component fabrication. The results indicate the presence of compressive yield magnitude residual stresses, and that structural performance is comparable to a standard bracket, but embodied carbon is in most cases higher. The paper concludes with a discussion of the findings, and possible next steps in the optimisation, structural testing, and embodied carbon analysis workflow.</p></div>\",\"PeriodicalId\":72270,\"journal\":{\"name\":\"Architectural intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44223-024-00063-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Architectural intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44223-024-00063-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Architectural intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44223-024-00063-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究调查了连接建筑幕墙板和楼板的金属支架的拓扑优化。与标准建筑构件的典型情况一样,金属支架的设计过于复杂,负载余量高于实际应用负载。对其进行优化可减少质量,使应力分布更加均匀。相应地,项目提出的问题是,优化设计是否具有与建筑中使用的标准支架相当的结构性能,以及更低的体现碳排放量。为了回答这个问题,我们对标准外墙支架进行了多次优化,最终形成了六种趋同的设计方案,并将其中三种推进到制造阶段。然后,对制造出的设计方案进行水平和垂直荷载及残余应力测试,以评估其性能,并进行体现碳分析,计算原材料提取、加工和部件制造的相应排放量。结果表明,存在压缩屈服级残余应力,结构性能与标准支架相当,但在大多数情况下体现的碳含量更高。论文最后讨论了研究结果,以及在优化、结构测试和体现碳分析工作流程中可能采取的下一步措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topologically optimised facade brackets: an embodied carbon, structural and residual stress analysis

The research investigates the topological optimisation of the metal brackets that connect curtain wall panelling to the floor slabs of a building. As is typically the case with standard building components, the brackets are overdesigned with higher load margins than real applied loads. Optimising them results in reduced mass and a more evenly spread stress distribution. Correspondingly, the question that the project asks is whether the optimised designs have a comparable structural performance to the standard bracketry used in construction, and a lower embodied carbon. To answer this, several optimisations of a standard facade bracket are performed, resulting in a total of six converged design options, with three of them progressed for fabrication. The manufactured designs are then horizontal and vertical load and residual stress tested to assess their performance, and an embodied carbon analysis is performed to calculate the corresponding emissions for raw material extraction, processing, and component fabrication. The results indicate the presence of compressive yield magnitude residual stresses, and that structural performance is comparable to a standard bracket, but embodied carbon is in most cases higher. The paper concludes with a discussion of the findings, and possible next steps in the optimisation, structural testing, and embodied carbon analysis workflow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信