{"title":"利用克罗内克定理估算空间区间上空间一维保利-乔丹-狄拉克函数零点个数的方法","authors":"E. A. Karatsuba","doi":"10.1134/S0040577924090022","DOIUrl":null,"url":null,"abstract":"<p> We investigate the properties of the Pauli–Jordan–Dirac anticommutator of the quantum field theory of free Dirac electrons in a discrete representation in the spatially one-dimensional case and present a method for estimating the number of zeros of the anticommutator on spatial intervals using the Kronecker theorem. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"220 3","pages":"1429 - 1439"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for estimating the number of zeros of the spatially one-dimensional Pauli–Jordan–Dirac function on spatial intervals using the Kronecker theorem\",\"authors\":\"E. A. Karatsuba\",\"doi\":\"10.1134/S0040577924090022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We investigate the properties of the Pauli–Jordan–Dirac anticommutator of the quantum field theory of free Dirac electrons in a discrete representation in the spatially one-dimensional case and present a method for estimating the number of zeros of the anticommutator on spatial intervals using the Kronecker theorem. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"220 3\",\"pages\":\"1429 - 1439\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924090022\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924090022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Method for estimating the number of zeros of the spatially one-dimensional Pauli–Jordan–Dirac function on spatial intervals using the Kronecker theorem
We investigate the properties of the Pauli–Jordan–Dirac anticommutator of the quantum field theory of free Dirac electrons in a discrete representation in the spatially one-dimensional case and present a method for estimating the number of zeros of the anticommutator on spatial intervals using the Kronecker theorem.
期刊介绍:
Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems.
Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.