论法诺三折的富塔基不变量

Q2 Mathematics
Lars Martin Sektnan, Carl Tipler
{"title":"论法诺三折的富塔基不变量","authors":"Lars Martin Sektnan,&nbsp;Carl Tipler","doi":"10.1007/s11565-024-00503-x","DOIUrl":null,"url":null,"abstract":"<div><p>We study the zero locus of the Futaki invariant on <i>K</i>-polystable Fano threefolds, seen as a map from the Kähler cone to the dual of the Lie algebra of the reduced automorphism group. We show that, apart from families 3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7 and 5.3 of the Iskovskikh–Mori–Mukai classification of Fano threefolds, the Futaki invariant of such manifolds vanishes identically on their Kähler cone. In all cases, when the Picard rank is greater or equal to two, we exhibit explicit 2-dimensional differentiable families of Kähler classes containing the anti-canonical class and on which the Futaki invariant is identically zero. As a corollary, we deduce the existence of non Kähler–Einstein cscK metrics on all such Fano threefolds.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"811 - 837"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-024-00503-x.pdf","citationCount":"0","resultStr":"{\"title\":\"On the Futaki invariant of Fano threefolds\",\"authors\":\"Lars Martin Sektnan,&nbsp;Carl Tipler\",\"doi\":\"10.1007/s11565-024-00503-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the zero locus of the Futaki invariant on <i>K</i>-polystable Fano threefolds, seen as a map from the Kähler cone to the dual of the Lie algebra of the reduced automorphism group. We show that, apart from families 3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7 and 5.3 of the Iskovskikh–Mori–Mukai classification of Fano threefolds, the Futaki invariant of such manifolds vanishes identically on their Kähler cone. In all cases, when the Picard rank is greater or equal to two, we exhibit explicit 2-dimensional differentiable families of Kähler classes containing the anti-canonical class and on which the Futaki invariant is identically zero. As a corollary, we deduce the existence of non Kähler–Einstein cscK metrics on all such Fano threefolds.\\n</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 3\",\"pages\":\"811 - 837\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-024-00503-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00503-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00503-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 K 多稳法诺三折上的富塔基不变量的零点,将其视为从凯勒锥到还原自变群的李代数对偶的映射。我们证明,除了伊斯科夫斯基-莫里-穆凯(Iskovskikh-Mori-Mukai)法诺三维流形分类的第 3.9、3.13、3.19、3.20、4.2、4.4、4.7 和 5.3 族之外,这些流形的富塔基不变量在它们的凯勒锥上完全消失。在所有情况下,当皮卡德秩大于或等于2时,我们都展示了包含反典型类的凯勒类的显式二维可微分族,在这些可微分族上,富特基不变量同等于零。作为推论,我们推导出在所有这些法诺三折上都存在非凯勒-爱因斯坦 cscK 度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Futaki invariant of Fano threefolds

We study the zero locus of the Futaki invariant on K-polystable Fano threefolds, seen as a map from the Kähler cone to the dual of the Lie algebra of the reduced automorphism group. We show that, apart from families 3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7 and 5.3 of the Iskovskikh–Mori–Mukai classification of Fano threefolds, the Futaki invariant of such manifolds vanishes identically on their Kähler cone. In all cases, when the Picard rank is greater or equal to two, we exhibit explicit 2-dimensional differentiable families of Kähler classes containing the anti-canonical class and on which the Futaki invariant is identically zero. As a corollary, we deduce the existence of non Kähler–Einstein cscK metrics on all such Fano threefolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信