具有信号敏感性和非线性产物的双物种趋化竞争系统的全局行为

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Zhan Jiao, Irena Jadlovská, Tongxing Li
{"title":"具有信号敏感性和非线性产物的双物种趋化竞争系统的全局行为","authors":"Zhan Jiao,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li","doi":"10.1007/s00245-024-10137-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article considers a two competitive biological species system involving signal-dependent motilities and sensitivities and nonlinear productions </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{l} \\begin{aligned} &amp;{}u_t = \\nabla \\cdot \\big (D_1(v)\\nabla u-uS_1(v)\\nabla v\\big )+\\mu _1u(1-u^{\\alpha _1}-a_1w),&amp;{} x\\in \\Omega ,\\ t&gt;0&amp;{},\\\\ &amp;{} v_t=\\Delta v-v+b_1w^{\\gamma _1}, &amp;{} x\\in \\Omega ,\\ t&gt;0&amp;{},\\\\ &amp;{}w_t = \\nabla \\cdot \\big (D_2(z)\\nabla w-wS_2(z)\\nabla z\\big )+\\mu _2w(1-w^{\\alpha _2}-a_2u),&amp;{} x\\in \\Omega ,\\ t&gt;0&amp;{},\\\\ &amp;{} z_t=\\Delta z-z+b_2u^{\\gamma _2}, &amp;{} x\\in \\Omega ,\\ t&gt;0&amp;{}\\\\ \\end{aligned} \\end{array} \\right. \\end{aligned}$$</span></div></div><p>in a bounded and smooth domain <span>\\(\\Omega \\subset \\mathbb R^2\\)</span>, where the parameters <span>\\(\\mu _i, \\alpha _i, a_i, b_i, \\gamma _i\\)</span> <span>\\((i=1,2)\\)</span> are positive constants, and the functions <span>\\(D_1(v),S_1(v),D_2(z),S_2(z)\\)</span> fulfill the following hypotheses: <span>\\(\\Diamond \\)</span> <span>\\(D_i(\\psi ),S_i(\\psi )\\in C^2([0,\\infty ))\\)</span>, <span>\\(D_i(\\psi ),S_i(\\psi )&gt;0\\)</span> for all <span>\\(\\psi \\ge 0\\)</span>, <span>\\(D_i^{\\prime }(\\psi )&lt;0\\)</span> and <span>\\(\\underset{\\psi \\rightarrow \\infty }{\\lim } D_i(\\psi )=0\\)</span>; <span>\\(\\Diamond \\)</span> <span>\\(\\underset{\\psi \\rightarrow \\infty }{\\lim } \\frac{S_i(\\psi )}{D_i(\\psi )}\\)</span> and <span>\\(\\underset{\\psi \\rightarrow \\infty }{\\lim } \\frac{D^{\\prime }_i(\\psi )}{D_i(\\psi )}\\)</span> exist. We first confirm the global boundedness of the classical solution provided that the additional conditions <span>\\(2\\gamma _1\\le 1+\\alpha _2\\)</span> and <span>\\(2\\gamma _2\\le 1+\\alpha _1\\)</span> hold. Moreover, by constructing several suitable Lyapunov functionals, it is demonstrated that the global solution exponentially or algebraically converges to the constant stationary solutions and the corresponding convergence rates are determined under some specific stress conditions.\n</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Behavior in a Two-Species Chemotaxis-Competition System with Signal-Dependent Sensitivities and Nonlinear Productions\",\"authors\":\"Zhan Jiao,&nbsp;Irena Jadlovská,&nbsp;Tongxing Li\",\"doi\":\"10.1007/s00245-024-10137-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article considers a two competitive biological species system involving signal-dependent motilities and sensitivities and nonlinear productions </p><div><div><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{l} \\\\begin{aligned} &amp;{}u_t = \\\\nabla \\\\cdot \\\\big (D_1(v)\\\\nabla u-uS_1(v)\\\\nabla v\\\\big )+\\\\mu _1u(1-u^{\\\\alpha _1}-a_1w),&amp;{} x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;{},\\\\\\\\ &amp;{} v_t=\\\\Delta v-v+b_1w^{\\\\gamma _1}, &amp;{} x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;{},\\\\\\\\ &amp;{}w_t = \\\\nabla \\\\cdot \\\\big (D_2(z)\\\\nabla w-wS_2(z)\\\\nabla z\\\\big )+\\\\mu _2w(1-w^{\\\\alpha _2}-a_2u),&amp;{} x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;{},\\\\\\\\ &amp;{} z_t=\\\\Delta z-z+b_2u^{\\\\gamma _2}, &amp;{} x\\\\in \\\\Omega ,\\\\ t&gt;0&amp;{}\\\\\\\\ \\\\end{aligned} \\\\end{array} \\\\right. \\\\end{aligned}$$</span></div></div><p>in a bounded and smooth domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb R^2\\\\)</span>, where the parameters <span>\\\\(\\\\mu _i, \\\\alpha _i, a_i, b_i, \\\\gamma _i\\\\)</span> <span>\\\\((i=1,2)\\\\)</span> are positive constants, and the functions <span>\\\\(D_1(v),S_1(v),D_2(z),S_2(z)\\\\)</span> fulfill the following hypotheses: <span>\\\\(\\\\Diamond \\\\)</span> <span>\\\\(D_i(\\\\psi ),S_i(\\\\psi )\\\\in C^2([0,\\\\infty ))\\\\)</span>, <span>\\\\(D_i(\\\\psi ),S_i(\\\\psi )&gt;0\\\\)</span> for all <span>\\\\(\\\\psi \\\\ge 0\\\\)</span>, <span>\\\\(D_i^{\\\\prime }(\\\\psi )&lt;0\\\\)</span> and <span>\\\\(\\\\underset{\\\\psi \\\\rightarrow \\\\infty }{\\\\lim } D_i(\\\\psi )=0\\\\)</span>; <span>\\\\(\\\\Diamond \\\\)</span> <span>\\\\(\\\\underset{\\\\psi \\\\rightarrow \\\\infty }{\\\\lim } \\\\frac{S_i(\\\\psi )}{D_i(\\\\psi )}\\\\)</span> and <span>\\\\(\\\\underset{\\\\psi \\\\rightarrow \\\\infty }{\\\\lim } \\\\frac{D^{\\\\prime }_i(\\\\psi )}{D_i(\\\\psi )}\\\\)</span> exist. We first confirm the global boundedness of the classical solution provided that the additional conditions <span>\\\\(2\\\\gamma _1\\\\le 1+\\\\alpha _2\\\\)</span> and <span>\\\\(2\\\\gamma _2\\\\le 1+\\\\alpha _1\\\\)</span> hold. Moreover, by constructing several suitable Lyapunov functionals, it is demonstrated that the global solution exponentially or algebraically converges to the constant stationary solutions and the corresponding convergence rates are determined under some specific stress conditions.\\n</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10137-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10137-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这篇文章考虑的是两个竞争性生物物种系统,其中涉及信号依赖性运动和敏感性以及非线性生产 $$\begin{aligned}\left\{ \begin{array}{l}\$$begin{aligned} &{}u_t = \nabla \cdot \big (D_1(v)\nabla u-uS_1(v)\nabla v\big )+\mu _1u(1-u^{\alpha _1}-a_1w),&;{} x\in \Omega ,\t>0&{},\amp;{} v_t=\Delta v-v+b_1w^\{gamma _1}, &{} x\in \Omega ,\t>0&;{},\ &{}w_t = \nabla \cdot \big (D_2(z)\nabla w-wS_2(z)\nabla z\big )+\mu _2w(1-w^\{alpha _2}-a_2u),&;{} x\in \Omega ,\ t>0&{},\ &{} z_t=\Delta z-z+b_2u^\{gamma _2}, &{} x\in \Omega ,\ t>0&{}\end{aligned}\end{array}\right。\end{aligned}$in a bounded and smooth domain \(\Omega \subset \mathbb R^2\), where the parameters \(\mu _i, \alpha _i, a_i, b_i、\((i=1,2))都是正常数,函数(D_1(v),S_1(v),D_2(z),S_2(z))满足以下假设:\(\Diamond \) \(D_i(\psi ),S_i(\psi )\in C^2([0,\infty ))\), \(D_i(\psi ),S_i(\psi )>0\) for all \(\psi \ge 0\), \(D_i^{\prime }(\psi )<0\) and\(\underset{\psi \rightarrow \infty }{\lim }D_i(\psi )=0\); ( ( \Diamond \) \(\underset{\psi \rightarrow \infty }{\lim }\和 ( (underset {\psi \rightarrow \infty }\{lim }\存在。我们首先要确认经典解的全局有界性,前提是附加条件 \(2\gamma _1\le 1+\alpha _2\) 和 \(2\gamma _2\le 1+\alpha _1\) 成立。此外,通过构造几个合适的李雅普诺夫函数,证明了全局解在某些特定的应力条件下会指数或代数地收敛到恒定的静态解,并确定了相应的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Behavior in a Two-Species Chemotaxis-Competition System with Signal-Dependent Sensitivities and Nonlinear Productions

This article considers a two competitive biological species system involving signal-dependent motilities and sensitivities and nonlinear productions

$$\begin{aligned} \left\{ \begin{array}{l} \begin{aligned} &{}u_t = \nabla \cdot \big (D_1(v)\nabla u-uS_1(v)\nabla v\big )+\mu _1u(1-u^{\alpha _1}-a_1w),&{} x\in \Omega ,\ t>0&{},\\ &{} v_t=\Delta v-v+b_1w^{\gamma _1}, &{} x\in \Omega ,\ t>0&{},\\ &{}w_t = \nabla \cdot \big (D_2(z)\nabla w-wS_2(z)\nabla z\big )+\mu _2w(1-w^{\alpha _2}-a_2u),&{} x\in \Omega ,\ t>0&{},\\ &{} z_t=\Delta z-z+b_2u^{\gamma _2}, &{} x\in \Omega ,\ t>0&{}\\ \end{aligned} \end{array} \right. \end{aligned}$$

in a bounded and smooth domain \(\Omega \subset \mathbb R^2\), where the parameters \(\mu _i, \alpha _i, a_i, b_i, \gamma _i\) \((i=1,2)\) are positive constants, and the functions \(D_1(v),S_1(v),D_2(z),S_2(z)\) fulfill the following hypotheses: \(\Diamond \) \(D_i(\psi ),S_i(\psi )\in C^2([0,\infty ))\), \(D_i(\psi ),S_i(\psi )>0\) for all \(\psi \ge 0\), \(D_i^{\prime }(\psi )<0\) and \(\underset{\psi \rightarrow \infty }{\lim } D_i(\psi )=0\); \(\Diamond \) \(\underset{\psi \rightarrow \infty }{\lim } \frac{S_i(\psi )}{D_i(\psi )}\) and \(\underset{\psi \rightarrow \infty }{\lim } \frac{D^{\prime }_i(\psi )}{D_i(\psi )}\) exist. We first confirm the global boundedness of the classical solution provided that the additional conditions \(2\gamma _1\le 1+\alpha _2\) and \(2\gamma _2\le 1+\alpha _1\) hold. Moreover, by constructing several suitable Lyapunov functionals, it is demonstrated that the global solution exponentially or algebraically converges to the constant stationary solutions and the corresponding convergence rates are determined under some specific stress conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信