用于铁路信号可信检测的共形预测

Léo Andéol, Thomas Fel, Florence de Grancey, Luca Mossina
{"title":"用于铁路信号可信检测的共形预测","authors":"Léo Andéol,&nbsp;Thomas Fel,&nbsp;Florence de Grancey,&nbsp;Luca Mossina","doi":"10.1007/s43681-023-00400-7","DOIUrl":null,"url":null,"abstract":"<div><p>We present an application of conformal prediction, a form of uncertainty quantification with guarantees, to the detection of railway signals. State-of-the-art architectures are tested and the most promising one undergoes the process of conformalization, where a correction is applied to the predicted bounding boxes (i.e., to their height and width) such that they comply with a predefined probability of success. We work with a novel exploratory dataset of images taken from the perspective of a train operator, as a first step to build and validate future trustworthy machine learning models for the detection of railway signals.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"4 1","pages":"157 - 161"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal prediction for trustworthy detection of railway signals\",\"authors\":\"Léo Andéol,&nbsp;Thomas Fel,&nbsp;Florence de Grancey,&nbsp;Luca Mossina\",\"doi\":\"10.1007/s43681-023-00400-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an application of conformal prediction, a form of uncertainty quantification with guarantees, to the detection of railway signals. State-of-the-art architectures are tested and the most promising one undergoes the process of conformalization, where a correction is applied to the predicted bounding boxes (i.e., to their height and width) such that they comply with a predefined probability of success. We work with a novel exploratory dataset of images taken from the perspective of a train operator, as a first step to build and validate future trustworthy machine learning models for the detection of railway signals.</p></div>\",\"PeriodicalId\":72137,\"journal\":{\"name\":\"AI and ethics\",\"volume\":\"4 1\",\"pages\":\"157 - 161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI and ethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43681-023-00400-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-023-00400-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了保形预测在铁路信号检测中的应用,这是一种有保证的不确定性量化形式。我们对最先进的架构进行了测试,并对最有前途的架构进行了保形化处理,即对预测的边界框(即高度和宽度)进行修正,使其符合预定的成功概率。我们从列车操作员的视角出发,使用了一个新颖的探索性图像数据集,作为建立和验证未来用于检测铁路信号的可信机器学习模型的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conformal prediction for trustworthy detection of railway signals

We present an application of conformal prediction, a form of uncertainty quantification with guarantees, to the detection of railway signals. State-of-the-art architectures are tested and the most promising one undergoes the process of conformalization, where a correction is applied to the predicted bounding boxes (i.e., to their height and width) such that they comply with a predefined probability of success. We work with a novel exploratory dataset of images taken from the perspective of a train operator, as a first step to build and validate future trustworthy machine learning models for the detection of railway signals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信