椭圆曲线黑塞模量空间的几何内定态

Q2 Mathematics
Fabrizio Catanese, Edoardo Sernesi
{"title":"椭圆曲线黑塞模量空间的几何内定态","authors":"Fabrizio Catanese,&nbsp;Edoardo Sernesi","doi":"10.1007/s11565-024-00502-y","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the geometric map <span>\\( {\\mathfrak {C}}\\)</span>, called Cayleyan, associating to a plane cubic <i>E</i> the adjoint of its dual curve. We show that <span>\\( {\\mathfrak {C}}\\)</span> and the classical Hessian map <span>\\( {\\mathfrak {H}}\\)</span> generate a free semigroup. We begin the investigation of the geometry and dynamics of these maps, and of the <b>geometrically special elliptic curves</b>: these are the elliptic curves isomorphic to cubics in the Hesse pencil which are fixed by some endomorphism belonging to the semigroup <span>\\({{\\mathcal {W}}}(\\mathfrak {H}, \\mathfrak {C})\\)</span> generated by <span>\\( \\mathfrak {H}, \\mathfrak {C}\\)</span>. We point out then how the dynamic behaviours of <span>\\( {\\mathfrak {H}}\\)</span> and <span>\\( {\\mathfrak {C}}\\)</span> differ drastically. Firstly, concerning the number of real periodic points: for <span>\\( {\\mathfrak {H}}\\)</span> these are infinitely many, for <span>\\( {\\mathfrak {C}}\\)</span> they are just 4. Secondly, the Julia set of <span>\\( {\\mathfrak {H}}\\)</span> is the whole projective line, unlike what happens for all elements of <span>\\({{\\mathcal {W}}}(\\mathfrak {H}, \\mathfrak {C})\\)</span> which are not iterates of <span>\\( {\\mathfrak {H}}\\)</span>.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"781 - 810"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric endomorphisms of the Hesse moduli space of elliptic curves\",\"authors\":\"Fabrizio Catanese,&nbsp;Edoardo Sernesi\",\"doi\":\"10.1007/s11565-024-00502-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the geometric map <span>\\\\( {\\\\mathfrak {C}}\\\\)</span>, called Cayleyan, associating to a plane cubic <i>E</i> the adjoint of its dual curve. We show that <span>\\\\( {\\\\mathfrak {C}}\\\\)</span> and the classical Hessian map <span>\\\\( {\\\\mathfrak {H}}\\\\)</span> generate a free semigroup. We begin the investigation of the geometry and dynamics of these maps, and of the <b>geometrically special elliptic curves</b>: these are the elliptic curves isomorphic to cubics in the Hesse pencil which are fixed by some endomorphism belonging to the semigroup <span>\\\\({{\\\\mathcal {W}}}(\\\\mathfrak {H}, \\\\mathfrak {C})\\\\)</span> generated by <span>\\\\( \\\\mathfrak {H}, \\\\mathfrak {C}\\\\)</span>. We point out then how the dynamic behaviours of <span>\\\\( {\\\\mathfrak {H}}\\\\)</span> and <span>\\\\( {\\\\mathfrak {C}}\\\\)</span> differ drastically. Firstly, concerning the number of real periodic points: for <span>\\\\( {\\\\mathfrak {H}}\\\\)</span> these are infinitely many, for <span>\\\\( {\\\\mathfrak {C}}\\\\)</span> they are just 4. Secondly, the Julia set of <span>\\\\( {\\\\mathfrak {H}}\\\\)</span> is the whole projective line, unlike what happens for all elements of <span>\\\\({{\\\\mathcal {W}}}(\\\\mathfrak {H}, \\\\mathfrak {C})\\\\)</span> which are not iterates of <span>\\\\( {\\\\mathfrak {H}}\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 3\",\"pages\":\"781 - 810\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00502-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00502-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了被称为 Cayleyan 的几何映射({\mathfrak {C}}),它将平面立方体 E 与其对偶曲线的邻接关联起来。我们证明了 \( {\mathfrak {C}}\) 和经典的 Hessian 映射 \( {\mathfrak {H}}\) 产生了一个自由半群。我们开始研究这些映射的几何和动力学,以及几何上特殊的椭圆曲线:这些椭圆曲线与海塞铅笔中的立方体同构,它们被属于由 \(\mathfrak {H}, \mathfrak {C}\) 生成的半群 \({\mathcal {W}}(\mathfrak {H}, \mathfrak {C})\) 的某个内同态所固定。然后我们指出了( ( {\mathfrak {H}}\ )和( ( {\mathfrak {C}}\ )的动态行为是如何大相径庭的。首先,关于实周期点的数量:对于 ( {\mathfrak {H}})来说,这些点是无穷多的,而对于 ( {\mathfrak {C}})来说,这些点只有 4 个。其次,{\mathfrak {H}}\) 的Julia集是整个投影线,这与{\({\mathcal {W}}(\mathfrak {H}, \mathfrak {C})}的所有元素不同,这些元素不是{\({\mathfrak {H}}\) 的迭代。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric endomorphisms of the Hesse moduli space of elliptic curves

We consider the geometric map \( {\mathfrak {C}}\), called Cayleyan, associating to a plane cubic E the adjoint of its dual curve. We show that \( {\mathfrak {C}}\) and the classical Hessian map \( {\mathfrak {H}}\) generate a free semigroup. We begin the investigation of the geometry and dynamics of these maps, and of the geometrically special elliptic curves: these are the elliptic curves isomorphic to cubics in the Hesse pencil which are fixed by some endomorphism belonging to the semigroup \({{\mathcal {W}}}(\mathfrak {H}, \mathfrak {C})\) generated by \( \mathfrak {H}, \mathfrak {C}\). We point out then how the dynamic behaviours of \( {\mathfrak {H}}\) and \( {\mathfrak {C}}\) differ drastically. Firstly, concerning the number of real periodic points: for \( {\mathfrak {H}}\) these are infinitely many, for \( {\mathfrak {C}}\) they are just 4. Secondly, the Julia set of \( {\mathfrak {H}}\) is the whole projective line, unlike what happens for all elements of \({{\mathcal {W}}}(\mathfrak {H}, \mathfrak {C})\) which are not iterates of \( {\mathfrak {H}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信