二维杨-米尔斯-希格斯瞬子的定量稳定性

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Aria Halavati
{"title":"二维杨-米尔斯-希格斯瞬子的定量稳定性","authors":"Aria Halavati","doi":"10.1007/s00205-024-02035-2","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that if an N-vortex pair nearly minimizes the Yang–Mills–Higgs energy, then it is second order close to a minimizer. First, we use new weighted inequalities in two dimensions and compactness arguments to show stability for sections with some regularity. Second, we define a selection principle using a penalized functional and by the elliptic regularity and smooth perturbation of complex polynomials, we generalize the stability to all nearly minimizing pairs. With the same method, we also prove the analogous second order stability for nearly minimizing pairs on nontrivial line bundles over arbitrary compact smooth surfaces.\n</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative stability of Yang–Mills–Higgs instantons in two dimensions\",\"authors\":\"Aria Halavati\",\"doi\":\"10.1007/s00205-024-02035-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that if an N-vortex pair nearly minimizes the Yang–Mills–Higgs energy, then it is second order close to a minimizer. First, we use new weighted inequalities in two dimensions and compactness arguments to show stability for sections with some regularity. Second, we define a selection principle using a penalized functional and by the elliptic regularity and smooth perturbation of complex polynomials, we generalize the stability to all nearly minimizing pairs. With the same method, we also prove the analogous second order stability for nearly minimizing pairs on nontrivial line bundles over arbitrary compact smooth surfaces.\\n</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02035-2\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02035-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果一个 N 涡旋对几乎使杨-米尔斯-希格斯能量最小化,那么它的二阶接近于最小化。首先,我们使用新的二维加权不等式和紧凑性论证来证明具有一定规律性的部分的稳定性。其次,我们定义了使用惩罚函数的选择原则,并通过复多项式的椭圆正则性和平滑扰动,将稳定性推广到所有接近最小化的对。用同样的方法,我们还证明了在任意紧凑光滑表面上的非琐线束上的近乎最小化对的类似二阶稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative stability of Yang–Mills–Higgs instantons in two dimensions

We prove that if an N-vortex pair nearly minimizes the Yang–Mills–Higgs energy, then it is second order close to a minimizer. First, we use new weighted inequalities in two dimensions and compactness arguments to show stability for sections with some regularity. Second, we define a selection principle using a penalized functional and by the elliptic regularity and smooth perturbation of complex polynomials, we generalize the stability to all nearly minimizing pairs. With the same method, we also prove the analogous second order stability for nearly minimizing pairs on nontrivial line bundles over arbitrary compact smooth surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信