在医疗应用案例中使用 ScrutinAI 对 DNN 性能进行可视化检查

Rebekka Görge, Elena Haedecke, Michael Mock
{"title":"在医疗应用案例中使用 ScrutinAI 对 DNN 性能进行可视化检查","authors":"Rebekka Görge,&nbsp;Elena Haedecke,&nbsp;Michael Mock","doi":"10.1007/s43681-023-00399-x","DOIUrl":null,"url":null,"abstract":"<div><p>Our Visual Analytics (VA) tool ScrutinAI supports human analysts to investigate interactively model performance and data sets. Model performance depends on labeling quality to a large extent. In particular in medical settings, generation of high quality labels requires in depth expert knowledge and is very costly. Often, data sets are labeled by collecting opinions of groups of experts. We use our VA tool to analyze the influence of label variations between different experts on the model performance. ScrutinAI facilitates to perform a root cause analysis that distinguishes weaknesses of deep neural network (DNN) models caused by varying or missing labeling quality from true weaknesses. We scrutinize the overall detection of intracranial hemorrhages and the more subtle differentiation between subtypes in a publicly available data set.</p></div>","PeriodicalId":72137,"journal":{"name":"AI and ethics","volume":"4 1","pages":"151 - 156"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43681-023-00399-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Using ScrutinAI for visual inspection of DNN performance in a medical use case\",\"authors\":\"Rebekka Görge,&nbsp;Elena Haedecke,&nbsp;Michael Mock\",\"doi\":\"10.1007/s43681-023-00399-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Our Visual Analytics (VA) tool ScrutinAI supports human analysts to investigate interactively model performance and data sets. Model performance depends on labeling quality to a large extent. In particular in medical settings, generation of high quality labels requires in depth expert knowledge and is very costly. Often, data sets are labeled by collecting opinions of groups of experts. We use our VA tool to analyze the influence of label variations between different experts on the model performance. ScrutinAI facilitates to perform a root cause analysis that distinguishes weaknesses of deep neural network (DNN) models caused by varying or missing labeling quality from true weaknesses. We scrutinize the overall detection of intracranial hemorrhages and the more subtle differentiation between subtypes in a publicly available data set.</p></div>\",\"PeriodicalId\":72137,\"journal\":{\"name\":\"AI and ethics\",\"volume\":\"4 1\",\"pages\":\"151 - 156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43681-023-00399-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI and ethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43681-023-00399-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI and ethics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43681-023-00399-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的可视化分析(VA)工具 ScrutinAI 支持人类分析师以交互方式调查模型性能和数据集。模型性能在很大程度上取决于标签质量。特别是在医疗领域,生成高质量的标签需要深入的专家知识,而且成本很高。通常情况下,数据集是通过收集专家小组的意见来进行标注的。我们使用 VA 工具来分析不同专家之间的标签差异对模型性能的影响。ScrutinAI 可帮助执行根本原因分析,将因标签质量变化或缺失而导致的深度神经网络(DNN)模型缺陷与真正的缺陷区分开来。我们仔细研究了颅内出血的总体检测情况,以及公开数据集中亚型之间更微妙的区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using ScrutinAI for visual inspection of DNN performance in a medical use case

Our Visual Analytics (VA) tool ScrutinAI supports human analysts to investigate interactively model performance and data sets. Model performance depends on labeling quality to a large extent. In particular in medical settings, generation of high quality labels requires in depth expert knowledge and is very costly. Often, data sets are labeled by collecting opinions of groups of experts. We use our VA tool to analyze the influence of label variations between different experts on the model performance. ScrutinAI facilitates to perform a root cause analysis that distinguishes weaknesses of deep neural network (DNN) models caused by varying or missing labeling quality from true weaknesses. We scrutinize the overall detection of intracranial hemorrhages and the more subtle differentiation between subtypes in a publicly available data set.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信