{"title":"氧化石墨烯/Fe3O4 催化布洛芬臭氧反应的动力学研究:蒙特卡罗模拟","authors":"Hamid Dezhampanah, Hamed Moradmand Jalali","doi":"10.1134/S0040579523050391","DOIUrl":null,"url":null,"abstract":"<p>Kinetic Monte Carlo modeling was employed as a powerful tool to kinetically investigate of ibuprofen removal by direct ozonation (O<sub>3</sub> alone) and heterogeneous catalytic ozonation (graphene oxide and graphene oxide loaded with Fe<sub>3</sub>O<sub>4</sub>). The kinetic mechanisms and the values of rate constants for each step of the suggested mechanisms were found by Monte Carlo simulation. The graphene oxide loaded with Fe<sub>3</sub>O<sub>4</sub> displays a significant role as a heterogeneous catalyst in the ozonation of ibuprofen by enhancing the reactivity of ibuprofen drug and O<sub>3</sub> on the graphene oxide surface. Optimized values of catalysts and O<sub>3</sub> were attained through obtaining the effect of initial O<sub>3</sub> and catalyst amounts on the rate of ibuprofen elimination utilizing kinetic Monte Carlo simulation. The simulation outcomes of the present investigation demonstrate satisfactory agreement with the experimental ozonation data for the systems above.</p>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"57 5","pages":"889 - 897"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetically Investigation of Ibuprofen Ozonation Catalyzed by Graphene Oxide/Fe3O4: A Monte Carlo Simulation\",\"authors\":\"Hamid Dezhampanah, Hamed Moradmand Jalali\",\"doi\":\"10.1134/S0040579523050391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Kinetic Monte Carlo modeling was employed as a powerful tool to kinetically investigate of ibuprofen removal by direct ozonation (O<sub>3</sub> alone) and heterogeneous catalytic ozonation (graphene oxide and graphene oxide loaded with Fe<sub>3</sub>O<sub>4</sub>). The kinetic mechanisms and the values of rate constants for each step of the suggested mechanisms were found by Monte Carlo simulation. The graphene oxide loaded with Fe<sub>3</sub>O<sub>4</sub> displays a significant role as a heterogeneous catalyst in the ozonation of ibuprofen by enhancing the reactivity of ibuprofen drug and O<sub>3</sub> on the graphene oxide surface. Optimized values of catalysts and O<sub>3</sub> were attained through obtaining the effect of initial O<sub>3</sub> and catalyst amounts on the rate of ibuprofen elimination utilizing kinetic Monte Carlo simulation. The simulation outcomes of the present investigation demonstrate satisfactory agreement with the experimental ozonation data for the systems above.</p>\",\"PeriodicalId\":798,\"journal\":{\"name\":\"Theoretical Foundations of Chemical Engineering\",\"volume\":\"57 5\",\"pages\":\"889 - 897\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Foundations of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040579523050391\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579523050391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Kinetically Investigation of Ibuprofen Ozonation Catalyzed by Graphene Oxide/Fe3O4: A Monte Carlo Simulation
Kinetic Monte Carlo modeling was employed as a powerful tool to kinetically investigate of ibuprofen removal by direct ozonation (O3 alone) and heterogeneous catalytic ozonation (graphene oxide and graphene oxide loaded with Fe3O4). The kinetic mechanisms and the values of rate constants for each step of the suggested mechanisms were found by Monte Carlo simulation. The graphene oxide loaded with Fe3O4 displays a significant role as a heterogeneous catalyst in the ozonation of ibuprofen by enhancing the reactivity of ibuprofen drug and O3 on the graphene oxide surface. Optimized values of catalysts and O3 were attained through obtaining the effect of initial O3 and catalyst amounts on the rate of ibuprofen elimination utilizing kinetic Monte Carlo simulation. The simulation outcomes of the present investigation demonstrate satisfactory agreement with the experimental ozonation data for the systems above.
期刊介绍:
Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.