双规则协变表示的考奇对偶和沃尔德式分解

IF 0.5 Q3 MATHEMATICS
Dimple Saini
{"title":"双规则协变表示的考奇对偶和沃尔德式分解","authors":"Dimple Saini","doi":"10.1007/s44146-023-00105-7","DOIUrl":null,"url":null,"abstract":"<div><p>The notion of Cauchy dual for left-invertible covariant representations was studied by Trivedi and Veerabathiran. Using the Moore-Penrose inverse, we extend this notion for the covariant representations having closed range and explore several useful properties. We obtain a Wold-type decomposition for regular completely bounded covariant representation whose Moore-Penrose inverse is regular. Also, we discuss an example related to the non-commutative bilateral weighted shift. We prove that the Cauchy dual of the concave covariant representation <span>\\((\\sigma , V)\\)</span> modulo <span>\\(N(\\widetilde{V})\\)</span> is hyponormal modulo <span>\\(N(\\widetilde{V})\\)</span>.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 1-2","pages":"123 - 144"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cauchy dual and Wold-type decomposition for bi-regular covariant representations\",\"authors\":\"Dimple Saini\",\"doi\":\"10.1007/s44146-023-00105-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The notion of Cauchy dual for left-invertible covariant representations was studied by Trivedi and Veerabathiran. Using the Moore-Penrose inverse, we extend this notion for the covariant representations having closed range and explore several useful properties. We obtain a Wold-type decomposition for regular completely bounded covariant representation whose Moore-Penrose inverse is regular. Also, we discuss an example related to the non-commutative bilateral weighted shift. We prove that the Cauchy dual of the concave covariant representation <span>\\\\((\\\\sigma , V)\\\\)</span> modulo <span>\\\\(N(\\\\widetilde{V})\\\\)</span> is hyponormal modulo <span>\\\\(N(\\\\widetilde{V})\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"90 1-2\",\"pages\":\"123 - 144\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00105-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00105-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Trivedi 和 Veerabathiran 研究了左可逆协变表示的考奇对偶概念。利用摩尔-彭罗斯逆,我们将这一概念扩展到具有封闭范围的协变表示,并探索了几个有用的性质。我们得到了规则的完全有界协变表示的沃尔德型分解,其摩尔-彭罗斯逆是规则的。此外,我们还讨论了一个与非交换双边加权移动相关的例子。我们证明了凹协变表示 \((\sigma , V)\) modulo \(N(\widetilde{V})\ 的考奇对偶是次正态 modulo \(N(\widetilde{V})\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cauchy dual and Wold-type decomposition for bi-regular covariant representations

The notion of Cauchy dual for left-invertible covariant representations was studied by Trivedi and Veerabathiran. Using the Moore-Penrose inverse, we extend this notion for the covariant representations having closed range and explore several useful properties. We obtain a Wold-type decomposition for regular completely bounded covariant representation whose Moore-Penrose inverse is regular. Also, we discuss an example related to the non-commutative bilateral weighted shift. We prove that the Cauchy dual of the concave covariant representation \((\sigma , V)\) modulo \(N(\widetilde{V})\) is hyponormal modulo \(N(\widetilde{V})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信