加权巴拿赫空间中的高阶椭圆方程

Q2 Mathematics
Bilal T. Bilalov, Sabina R. Sadigova, Lyoubomira G. Softova
{"title":"加权巴拿赫空间中的高阶椭圆方程","authors":"Bilal T. Bilalov,&nbsp;Sabina R. Sadigova,&nbsp;Lyoubomira G. Softova","doi":"10.1007/s11565-024-00505-9","DOIUrl":null,"url":null,"abstract":"<div><p>We consider <i>m</i>-th order linear, uniformly elliptic equations <span>\\(\\mathcal {L}u=f\\)</span> with non-smooth coefficients in Banach–Sobolev spaces <span>\\(W_{X_w}^m (\\Omega )\\)</span> generated by weighted Banach Function Spaces (BFS) <span>\\(X_w (\\Omega )\\)</span> on a bounded domain <span>\\(\\Omega \\subset {\\mathbb R}^{n}\\)</span>. Supposing boundedness of the Hardy–Littlewood Maximal operator and the Calderón–Zygmund singular integrals in <span>\\(X_w (\\Omega )\\)</span> we obtain solvability in the small in <span>\\(W_{X_w}^m (\\Omega )\\)</span> and establish interior Schauder type a priori estimates. These results will be used in order to obtain Fredholmness of the operator <span>\\(\\mathcal {L}\\)</span> in <span>\\(X_w (\\Omega )\\)</span>.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 4","pages":"1351 - 1373"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11565-024-00505-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher order elliptic equations in weighted Banach spaces\",\"authors\":\"Bilal T. Bilalov,&nbsp;Sabina R. Sadigova,&nbsp;Lyoubomira G. Softova\",\"doi\":\"10.1007/s11565-024-00505-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider <i>m</i>-th order linear, uniformly elliptic equations <span>\\\\(\\\\mathcal {L}u=f\\\\)</span> with non-smooth coefficients in Banach–Sobolev spaces <span>\\\\(W_{X_w}^m (\\\\Omega )\\\\)</span> generated by weighted Banach Function Spaces (BFS) <span>\\\\(X_w (\\\\Omega )\\\\)</span> on a bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb R}^{n}\\\\)</span>. Supposing boundedness of the Hardy–Littlewood Maximal operator and the Calderón–Zygmund singular integrals in <span>\\\\(X_w (\\\\Omega )\\\\)</span> we obtain solvability in the small in <span>\\\\(W_{X_w}^m (\\\\Omega )\\\\)</span> and establish interior Schauder type a priori estimates. These results will be used in order to obtain Fredholmness of the operator <span>\\\\(\\\\mathcal {L}\\\\)</span> in <span>\\\\(X_w (\\\\Omega )\\\\)</span>.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 4\",\"pages\":\"1351 - 1373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11565-024-00505-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00505-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00505-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在有界域\(\Omega \子集{\mathbb R}^{n}\)上由加权巴拿赫函数空间(BFS)\(X_w (\Omega )\) 生成的巴拿赫-索波列夫空间\(W_{X_w}^m (\Omega )\)中具有非光滑系数的 m 阶线性均匀椭圆方程(\mathcal {L}u=f\ )。假设哈代-利特尔伍德(Hardy-Littlewood)最大算子和卡尔德龙-齐格蒙德(Calderón-Zygmund)奇异积分在\(X_w (\Omega )\) 中是有界的,我们就可以在\(W_{X_w}^m (\Omega )\) 中的小范围内获得可解性,并建立内部肖德尔(Schauder)型先验估计。这些结果将被用于获得在 (X_w (\Omega )\) 中算子 (\mathcal {L}\)的弗雷德霍尔姆性(Fredholmness)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order elliptic equations in weighted Banach spaces

We consider m-th order linear, uniformly elliptic equations \(\mathcal {L}u=f\) with non-smooth coefficients in Banach–Sobolev spaces \(W_{X_w}^m (\Omega )\) generated by weighted Banach Function Spaces (BFS) \(X_w (\Omega )\) on a bounded domain \(\Omega \subset {\mathbb R}^{n}\). Supposing boundedness of the Hardy–Littlewood Maximal operator and the Calderón–Zygmund singular integrals in \(X_w (\Omega )\) we obtain solvability in the small in \(W_{X_w}^m (\Omega )\) and establish interior Schauder type a priori estimates. These results will be used in order to obtain Fredholmness of the operator \(\mathcal {L}\) in \(X_w (\Omega )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信