量子群及其振子表示的微分算子方法

IF 0.8 3区 数学 Q2 MATHEMATICS
Zhao Bing Fan, Ji Cheng Geng, Shao Long Han
{"title":"量子群及其振子表示的微分算子方法","authors":"Zhao Bing Fan,&nbsp;Ji Cheng Geng,&nbsp;Shao Long Han","doi":"10.1007/s10114-024-2151-0","DOIUrl":null,"url":null,"abstract":"<div><p>For a quasi-split Satake diagram, we define a modified <i>q</i>-Weyl algebra, and show that there is an algebra homomorphism between it and the corresponding <i>ı</i>quantum group. In other words, we provide a differential operator approach to <i>ı</i>quantum groups. Meanwhile, the oscillator representations of <i>ı</i>quantum groups are obtained. The crystal basis of the irreducible subrepresentations of these oscillator representations are constructed.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 5","pages":"1360 - 1374"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential Operator Approach to ıquantum Groups and Their Oscillator Representations\",\"authors\":\"Zhao Bing Fan,&nbsp;Ji Cheng Geng,&nbsp;Shao Long Han\",\"doi\":\"10.1007/s10114-024-2151-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a quasi-split Satake diagram, we define a modified <i>q</i>-Weyl algebra, and show that there is an algebra homomorphism between it and the corresponding <i>ı</i>quantum group. In other words, we provide a differential operator approach to <i>ı</i>quantum groups. Meanwhile, the oscillator representations of <i>ı</i>quantum groups are obtained. The crystal basis of the irreducible subrepresentations of these oscillator representations are constructed.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 5\",\"pages\":\"1360 - 1374\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2151-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2151-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于准分裂 Satake 图,我们定义了一个修正的 q-Weyl 代数,并证明它与相应的 ı 量子群之间存在代数同构。换句话说,我们为 ı量子群提供了一种微分算子方法。同时,我们还得到了 ı量子群的振荡器表示。我们构建了这些振子表示的不可还原子表示的晶体基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Operator Approach to ıquantum Groups and Their Oscillator Representations

For a quasi-split Satake diagram, we define a modified q-Weyl algebra, and show that there is an algebra homomorphism between it and the corresponding ıquantum group. In other words, we provide a differential operator approach to ıquantum groups. Meanwhile, the oscillator representations of ıquantum groups are obtained. The crystal basis of the irreducible subrepresentations of these oscillator representations are constructed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信