一维狄拉克系统产生的算子组

Pub Date : 2024-03-14 DOI:10.1134/S1064562423701430
A. M. Savchuk, I. V. Sadovnichaya
{"title":"一维狄拉克系统产生的算子组","authors":"A. M. Savchuk,&nbsp;I. V. Sadovnichaya","doi":"10.1134/S1064562423701430","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space <span>\\(\\mathbb{H} = {{\\left( {{{L}_{2}}[0,\\pi ]} \\right)}^{2}}\\)</span>. The potential is assumed to be summable. It is proved that this group is well-defined in the space <span>\\(\\mathbb{H}\\)</span> and in the Sobolev spaces <span>\\(\\mathbb{H}_{U}^{\\theta }\\)</span>, <span>\\(\\theta &gt; 0\\)</span>, with a fractional index of smoothness θ and boundary conditions <i>U</i>. Similar results are proved in the spaces <span>\\({{\\left( {{{L}_{\\mu }}[0,\\pi ]} \\right)}^{2}}\\)</span>, <span>\\(\\mu \\in (1,\\infty )\\)</span>. In addition, we obtain estimates for the growth of the group as <span>\\(t \\to \\infty \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator Group Generated by a One-Dimensional Dirac System\",\"authors\":\"A. M. Savchuk,&nbsp;I. V. Sadovnichaya\",\"doi\":\"10.1134/S1064562423701430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space <span>\\\\(\\\\mathbb{H} = {{\\\\left( {{{L}_{2}}[0,\\\\pi ]} \\\\right)}^{2}}\\\\)</span>. The potential is assumed to be summable. It is proved that this group is well-defined in the space <span>\\\\(\\\\mathbb{H}\\\\)</span> and in the Sobolev spaces <span>\\\\(\\\\mathbb{H}_{U}^{\\\\theta }\\\\)</span>, <span>\\\\(\\\\theta &gt; 0\\\\)</span>, with a fractional index of smoothness θ and boundary conditions <i>U</i>. Similar results are proved in the spaces <span>\\\\({{\\\\left( {{{L}_{\\\\mu }}[0,\\\\pi ]} \\\\right)}^{2}}\\\\)</span>, <span>\\\\(\\\\mu \\\\in (1,\\\\infty )\\\\)</span>. In addition, we obtain estimates for the growth of the group as <span>\\\\(t \\\\to \\\\infty \\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了一个由作用于空间 \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}) 的一维狄拉克算子生成的强连续算子群。假定势是可求和的。研究证明,在具有分数平滑指数θ和边界条件U的空间(\(\mathbb{H}\)和Sobolev空间(\(\mathbb{H}_{U}^\{theta }\), \(\theta >0\))中,这个群是定义明确的。类似的结果也在空间 \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\) 中得到证明。此外,我们还得到了该组增长的估计值(t \to \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Operator Group Generated by a One-Dimensional Dirac System

In this paper, we construct a strongly continuous operator group generated by a one-dimensional Dirac operator acting in the space \(\mathbb{H} = {{\left( {{{L}_{2}}[0,\pi ]} \right)}^{2}}\). The potential is assumed to be summable. It is proved that this group is well-defined in the space \(\mathbb{H}\) and in the Sobolev spaces \(\mathbb{H}_{U}^{\theta }\), \(\theta > 0\), with a fractional index of smoothness θ and boundary conditions U. Similar results are proved in the spaces \({{\left( {{{L}_{\mu }}[0,\pi ]} \right)}^{2}}\), \(\mu \in (1,\infty )\). In addition, we obtain estimates for the growth of the group as \(t \to \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信