具有需求不确定性的竞争性设施选址问题的上限

Pub Date : 2024-03-14 DOI:10.1134/S1064562423600318
V. L. Beresnev, A. A. Melnikov
{"title":"具有需求不确定性的竞争性设施选址问题的上限","authors":"V. L. Beresnev,&nbsp;A. A. Melnikov","doi":"10.1134/S1064562423600318","DOIUrl":null,"url":null,"abstract":"<p>We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenarios. The problem of finding the best solutions for the parties is formulated as a discrete bilevel mathematical programming problem. A procedure for computing an upper bound for the objective function on solution subsets is suggested. The procedure could be employed in implicit enumeration schemes capable of computing an optimal solution for the problem under study. Within the procedure, additional constraints (cuts) iteratively augment the high-point relaxation of the initial bilevel problem, which strengthens the relaxation and improves the upper bound’s quality. A new procedure for generating such cuts is proposed, which allows us to construct the strongest cuts without enumerating the parameters encoding them.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper Bound for the Competitive Facility Location Problem with Demand Uncertainty\",\"authors\":\"V. L. Beresnev,&nbsp;A. A. Melnikov\",\"doi\":\"10.1134/S1064562423600318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenarios. The problem of finding the best solutions for the parties is formulated as a discrete bilevel mathematical programming problem. A procedure for computing an upper bound for the objective function on solution subsets is suggested. The procedure could be employed in implicit enumeration schemes capable of computing an optimal solution for the problem under study. Within the procedure, additional constraints (cuts) iteratively augment the high-point relaxation of the initial bilevel problem, which strengthens the relaxation and improves the upper bound’s quality. A new procedure for generating such cuts is proposed, which allows us to construct the strongest cuts without enumerating the parameters encoding them.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423600318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423600318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个竞争性设施选址问题,竞争双方在需求不确定的情况下开展业务。为双方寻找最佳解决方案的问题被表述为一个离散的双层数学编程问题。提出了一种计算解子集目标函数上限的程序。该程序可用于隐式枚举方案,该方案能够计算出所研究问题的最优解。在该程序中,额外的约束条件(切割)会迭代地增强初始双层问题的高点松弛,从而加强松弛并提高上界的质量。我们提出了一种生成这种切分的新程序,它允许我们在不列举编码参数的情况下构建最强的切分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Upper Bound for the Competitive Facility Location Problem with Demand Uncertainty

We consider a competitive facility location problem with two competing parties operating in a situation of uncertain demand scenarios. The problem of finding the best solutions for the parties is formulated as a discrete bilevel mathematical programming problem. A procedure for computing an upper bound for the objective function on solution subsets is suggested. The procedure could be employed in implicit enumeration schemes capable of computing an optimal solution for the problem under study. Within the procedure, additional constraints (cuts) iteratively augment the high-point relaxation of the initial bilevel problem, which strengthens the relaxation and improves the upper bound’s quality. A new procedure for generating such cuts is proposed, which allows us to construct the strongest cuts without enumerating the parameters encoding them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信