一系列非对称路由问题的恒因子近似算法

IF 0.5 4区 数学 Q3 MATHEMATICS
E. D. Neznakhina, Yu. Yu. Ogorodnikov, K. V. Rizhenko,  M. Yu. Khachay
{"title":"一系列非对称路由问题的恒因子近似算法","authors":"E. D. Neznakhina,&nbsp;Yu. Yu. Ogorodnikov,&nbsp;K. V. Rizhenko,&nbsp; M. Yu. Khachay","doi":"10.1134/S1064562423701454","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the first fixed-ratio approximation algorithms are proposed for a series of asymmetric settings of well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all of the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the asymmetric traveling salesman problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub, and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by applying a deeper extension of their approach.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"499 - 505"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation Algorithms with Constant Factors for a Series of Asymmetric Routing Problems\",\"authors\":\"E. D. Neznakhina,&nbsp;Yu. Yu. Ogorodnikov,&nbsp;K. V. Rizhenko,&nbsp; M. Yu. Khachay\",\"doi\":\"10.1134/S1064562423701454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the first fixed-ratio approximation algorithms are proposed for a series of asymmetric settings of well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all of the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the asymmetric traveling salesman problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub, and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by applying a deeper extension of their approach.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 3\",\"pages\":\"499 - 505\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701454\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701454","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首次针对一系列非对称设置的著名组合路由问题提出了固定比率近似算法。其中包括斯坦纳循环问题、有奖旅行推销员问题、有界循环数的最小成本循环覆盖问题等。几乎所有提出的算法都依赖于将所考虑的问题原封不动地还原为非对称旅行推销员问题的辅助实例,并采用 O. Svensson、J. Tarnawski、L. Végh、V. Traub 和 J. Vygen 最近获得的该问题的突破性近似结果。另一方面,通过对他们的方法进行更深入的扩展,证明了循环覆盖问题的近似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximation Algorithms with Constant Factors for a Series of Asymmetric Routing Problems

Approximation Algorithms with Constant Factors for a Series of Asymmetric Routing Problems

In this paper, the first fixed-ratio approximation algorithms are proposed for a series of asymmetric settings of well-known combinatorial routing problems. Among them are the Steiner cycle problem, the prize-collecting traveling salesman problem, the minimum cost cycle cover problem by a bounded number of cycles, etc. Almost all of the proposed algorithms rely on original reductions of the considered problems to auxiliary instances of the asymmetric traveling salesman problem and employ the breakthrough approximation results for this problem obtained recently by O. Svensson, J. Tarnawski, L. Végh, V. Traub, and J. Vygen. On the other hand, approximation of the cycle cover problem was proved by applying a deeper extension of their approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信