均匀渐近平坦 3-manifolds 的正质量定理的若干稳定性结果

IF 0.5 Q3 MATHEMATICS
Conghan Dong
{"title":"均匀渐近平坦 3-manifolds 的正质量定理的若干稳定性结果","authors":"Conghan Dong","doi":"10.1007/s40316-024-00226-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we show that for a sequence of orientable complete uniformly asymptotically flat 3-manifolds <span>\\((M_i, g_i)\\)</span> with nonnegative scalar curvature and ADM mass <span>\\(m(g_i)\\)</span> tending to zero, by subtracting some open subsets <span>\\(Z_i\\)</span>, whose boundary area satisfies <span>\\(\\textrm{Area}(\\partial Z_i) \\le C m(g_i)^{\\frac{1}{2}- \\varepsilon }\\)</span>, for any base point <span>\\(p_i \\in M_i{\\setminus } Z_i\\)</span>, <span>\\((M_i{\\setminus } Z_i, g_i, p_i)\\)</span> converges to the Euclidean space <span>\\(({\\mathbb {R}}^3, g_E, 0)\\)</span> in the <span>\\(C^0\\)</span> modulo negligible volume sense. Moreover, if we assume that the Ricci curvature is uniformly bounded from below, then <span>\\((M_i, g_i, p_i)\\)</span> converges to <span>\\(({\\mathbb {R}}^3, g_E, 0)\\)</span> in the pointed Gromov–Hausdorff topology.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"48 2","pages":"427 - 451"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some stability results of positive mass theorem for uniformly asymptotically flat 3-manifolds\",\"authors\":\"Conghan Dong\",\"doi\":\"10.1007/s40316-024-00226-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we show that for a sequence of orientable complete uniformly asymptotically flat 3-manifolds <span>\\\\((M_i, g_i)\\\\)</span> with nonnegative scalar curvature and ADM mass <span>\\\\(m(g_i)\\\\)</span> tending to zero, by subtracting some open subsets <span>\\\\(Z_i\\\\)</span>, whose boundary area satisfies <span>\\\\(\\\\textrm{Area}(\\\\partial Z_i) \\\\le C m(g_i)^{\\\\frac{1}{2}- \\\\varepsilon }\\\\)</span>, for any base point <span>\\\\(p_i \\\\in M_i{\\\\setminus } Z_i\\\\)</span>, <span>\\\\((M_i{\\\\setminus } Z_i, g_i, p_i)\\\\)</span> converges to the Euclidean space <span>\\\\(({\\\\mathbb {R}}^3, g_E, 0)\\\\)</span> in the <span>\\\\(C^0\\\\)</span> modulo negligible volume sense. Moreover, if we assume that the Ricci curvature is uniformly bounded from below, then <span>\\\\((M_i, g_i, p_i)\\\\)</span> converges to <span>\\\\(({\\\\mathbb {R}}^3, g_E, 0)\\\\)</span> in the pointed Gromov–Hausdorff topology.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"48 2\",\"pages\":\"427 - 451\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-024-00226-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-024-00226-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了对于具有非负标量曲率和趋于零的 ADM 质量 (m(g_i))的可定向完整均匀渐近平坦 3-manifolds((M_i, g_i))序列,通过减去一些开放子集 (Z_i)、对于任何基点 \(p_i \ in M_i{setminus } Z_i\) 来说,其边界面积满足 \(textrm{Area}(partial Z_i) \le C m(g_i)^{frac{1}{2}- \varepsilon }\)、\((M_i{setminus}Z_i, g_i, p_i)\) 收敛到欧几里得空间 \(({\mathbb {R}}^3, g_E, 0)\) 在 \(C^0\) modulo negligible volume 的意义上。此外,如果我们假设里奇曲率从下往上是均匀有界的,那么在尖的格罗莫夫-豪斯多夫拓扑中,\((M_i, g_i, p_i)\)收敛于\({\mathbb {R}}^3, g_E, 0)\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some stability results of positive mass theorem for uniformly asymptotically flat 3-manifolds

In this paper, we show that for a sequence of orientable complete uniformly asymptotically flat 3-manifolds \((M_i, g_i)\) with nonnegative scalar curvature and ADM mass \(m(g_i)\) tending to zero, by subtracting some open subsets \(Z_i\), whose boundary area satisfies \(\textrm{Area}(\partial Z_i) \le C m(g_i)^{\frac{1}{2}- \varepsilon }\), for any base point \(p_i \in M_i{\setminus } Z_i\), \((M_i{\setminus } Z_i, g_i, p_i)\) converges to the Euclidean space \(({\mathbb {R}}^3, g_E, 0)\) in the \(C^0\) modulo negligible volume sense. Moreover, if we assume that the Ricci curvature is uniformly bounded from below, then \((M_i, g_i, p_i)\) converges to \(({\mathbb {R}}^3, g_E, 0)\) in the pointed Gromov–Hausdorff topology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信