{"title":"均质随机介质中平均粒子流倍增超指数增长的数值统计研究","authors":"G. A. Mikhailov, G. Z. Lotova","doi":"10.1134/S106456242370148X","DOIUrl":null,"url":null,"abstract":"<p>A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"108 3","pages":"519 - 523"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium\",\"authors\":\"G. A. Mikhailov, G. Z. Lotova\",\"doi\":\"10.1134/S106456242370148X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.</p>\",\"PeriodicalId\":531,\"journal\":{\"name\":\"Doklady Mathematics\",\"volume\":\"108 3\",\"pages\":\"519 - 523\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106456242370148X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S106456242370148X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Numerical-Statistical Investigation of Superexponential Growth of Mean Particle Flow with Multiplication in a Homogeneous Random Medium
A new correlative-grid approximation of a homogeneous random field is introduced for an effective numerical-analytical investigation of the superexponential growth of the mean particle flow with multiplication in a random medium. The complexity of particle trajectory realization is independent of the correlation scale. Test computations for a critical ball with isotropic scattering showed high accuracy of the corresponding mean flow estimates. For the correlative-grid approximation of a random density field, the possibility of Gaussian asymptotics of the mean particle multiplication rate as the correlation scale decreases is justified.
期刊介绍:
Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.