通过从属关系定义的 Bazilevi(breve{c}\)型单价类的某些性质

IF 0.9 Q2 MATHEMATICS
T. Panigrahi, S. Jena, R. M. El-Ashwah
{"title":"通过从属关系定义的 Bazilevi(breve{c}\\)型单价类的某些性质","authors":"T. Panigrahi,&nbsp;S. Jena,&nbsp;R. M. El-Ashwah","doi":"10.1007/s13370-024-01216-2","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper with the aid of subordination, the authors introduce two subclasses of analytic functions denoted by <span>\\({\\mathcal {S}}_{\\alpha , \\beta }(\\lambda )~~(\\alpha ,~\\beta ,~ \\lambda \\in {\\mathbb {R}},~\\alpha &lt;1, \\beta &gt;1, \\lambda \\ge 0)\\)</span> and <span>\\({\\mathcal {G}}(\\lambda )\\)</span> defined in the open unit disk <span>\\({\\mathbb {D}}:=\\{z \\in {\\mathbb {C}}:|z|&lt;1\\}\\)</span>. These subclasses are defined through a certain univalent function <span>\\({\\mathcal {S}}_{\\alpha , \\beta }\\)</span> and the generating function of the Gregory coefficients <span>\\({\\mathcal {G}}(\\lambda )\\)</span>. We determine upper bounds of the initial coefficients, Fekete–Szeg<span>\\(\\ddot{o}\\)</span> functional, Hankel determinant of second order, logarithmic coefficients and inverse coefficients of the functions belongs to these subclasses. Some of the corollaries of the main results are also pointed out.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-024-01216-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Certain properties of Bazilevi\\\\(\\\\breve{c}\\\\) type univalent class defined through subordination\",\"authors\":\"T. Panigrahi,&nbsp;S. Jena,&nbsp;R. M. El-Ashwah\",\"doi\":\"10.1007/s13370-024-01216-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper with the aid of subordination, the authors introduce two subclasses of analytic functions denoted by <span>\\\\({\\\\mathcal {S}}_{\\\\alpha , \\\\beta }(\\\\lambda )~~(\\\\alpha ,~\\\\beta ,~ \\\\lambda \\\\in {\\\\mathbb {R}},~\\\\alpha &lt;1, \\\\beta &gt;1, \\\\lambda \\\\ge 0)\\\\)</span> and <span>\\\\({\\\\mathcal {G}}(\\\\lambda )\\\\)</span> defined in the open unit disk <span>\\\\({\\\\mathbb {D}}:=\\\\{z \\\\in {\\\\mathbb {C}}:|z|&lt;1\\\\}\\\\)</span>. These subclasses are defined through a certain univalent function <span>\\\\({\\\\mathcal {S}}_{\\\\alpha , \\\\beta }\\\\)</span> and the generating function of the Gregory coefficients <span>\\\\({\\\\mathcal {G}}(\\\\lambda )\\\\)</span>. We determine upper bounds of the initial coefficients, Fekete–Szeg<span>\\\\(\\\\ddot{o}\\\\)</span> functional, Hankel determinant of second order, logarithmic coefficients and inverse coefficients of the functions belongs to these subclasses. Some of the corollaries of the main results are also pointed out.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13370-024-01216-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01216-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01216-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,借助从属关系,作者引入了两类解析函数,分别用 \({\mathcal {S}}_{\alpha , \beta }(\lambda )~~(\alpha ,~\beta ,~ \lambda \ in {\mathbb {R}},~\alpha <;1, \beta >1, \lambda \ge 0))和 \({mathcal {G}}(\lambda )\) 定义在开放的单位盘中({\mathbb {D}}:=\{z \in {\mathbb {C}}:|z|<1\}\).这些子类是通过一定的单值函数 \({\mathcal {S}}_{\alpha , \beta }\) 和格雷戈里系数的生成函数 \({\mathcal {G}}(\lambda )\) 来定义的。我们确定了这些子类函数的初始系数、Fekete-Szeg(\ddot{o}\)函数、二阶汉克尔行列式、对数系数和逆系数的上界。此外,还指出了主要结果的一些推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain properties of Bazilevi\(\breve{c}\) type univalent class defined through subordination

In the present paper with the aid of subordination, the authors introduce two subclasses of analytic functions denoted by \({\mathcal {S}}_{\alpha , \beta }(\lambda )~~(\alpha ,~\beta ,~ \lambda \in {\mathbb {R}},~\alpha <1, \beta >1, \lambda \ge 0)\) and \({\mathcal {G}}(\lambda )\) defined in the open unit disk \({\mathbb {D}}:=\{z \in {\mathbb {C}}:|z|<1\}\). These subclasses are defined through a certain univalent function \({\mathcal {S}}_{\alpha , \beta }\) and the generating function of the Gregory coefficients \({\mathcal {G}}(\lambda )\). We determine upper bounds of the initial coefficients, Fekete–Szeg\(\ddot{o}\) functional, Hankel determinant of second order, logarithmic coefficients and inverse coefficients of the functions belongs to these subclasses. Some of the corollaries of the main results are also pointed out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信