使用前施瓦茨导数和施瓦茨导数的有界转折函数的微分从属关系

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Neenu Jose, V. Ravichandran, Abhijit Das
{"title":"使用前施瓦茨导数和施瓦茨导数的有界转折函数的微分从属关系","authors":"Neenu Jose,&nbsp;V. Ravichandran,&nbsp;Abhijit Das","doi":"10.1007/s13324-024-00973-4","DOIUrl":null,"url":null,"abstract":"<div><p>A normalized analytic function defined on the open unit disk is a bounded turning function if its derivative has positive real part. Such functions are univalent, and therefore, we find sufficient conditions for a function to be a bounded turning function. In this paper, we prove a general differential subordination theorem in terms of the derivative, the pre-Schwarzian derivative, and the Schwarzian derivative, providing sufficient conditions for a function to be a bounded turning function. We then apply the result to obtain several simple sufficient conditions.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential subordination for bounded turning functions using pre-Schwarzian and the Schwarzian derivatives\",\"authors\":\"Neenu Jose,&nbsp;V. Ravichandran,&nbsp;Abhijit Das\",\"doi\":\"10.1007/s13324-024-00973-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A normalized analytic function defined on the open unit disk is a bounded turning function if its derivative has positive real part. Such functions are univalent, and therefore, we find sufficient conditions for a function to be a bounded turning function. In this paper, we prove a general differential subordination theorem in terms of the derivative, the pre-Schwarzian derivative, and the Schwarzian derivative, providing sufficient conditions for a function to be a bounded turning function. We then apply the result to obtain several simple sufficient conditions.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00973-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00973-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果定义在开放单位圆盘上的归一化解析函数的导数具有正实部,那么它就是有界转折函数。这样的函数是一元函数,因此,我们找到了函数成为有界转折函数的充分条件。在本文中,我们用导数、前施瓦茨导数和施瓦茨导数证明了一般微分从属定理,为函数成为有界转折函数提供了充分条件。然后,我们应用该结果得到几个简单的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential subordination for bounded turning functions using pre-Schwarzian and the Schwarzian derivatives

A normalized analytic function defined on the open unit disk is a bounded turning function if its derivative has positive real part. Such functions are univalent, and therefore, we find sufficient conditions for a function to be a bounded turning function. In this paper, we prove a general differential subordination theorem in terms of the derivative, the pre-Schwarzian derivative, and the Schwarzian derivative, providing sufficient conditions for a function to be a bounded turning function. We then apply the result to obtain several simple sufficient conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信