Olivier Bourget, Gregorio Moreno, Christian Sadel, Amal Taarabt
{"title":"论单信道单元算子的绝对连续谱","authors":"Olivier Bourget, Gregorio Moreno, Christian Sadel, Amal Taarabt","doi":"10.1007/s11005-024-01866-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop the radial transfer matrix formalism for unitary one-channel operators. This generalizes previous formalisms for CMV matrices and scattering zippers. We establish an analog of Carmona’s formula and deduce criteria for absolutely continuous spectrum which we apply to random Hilbert Schmidt perturbations of periodic scattering zippers.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On absolutely continuous spectrum for one-channel unitary operators\",\"authors\":\"Olivier Bourget, Gregorio Moreno, Christian Sadel, Amal Taarabt\",\"doi\":\"10.1007/s11005-024-01866-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop the radial transfer matrix formalism for unitary one-channel operators. This generalizes previous formalisms for CMV matrices and scattering zippers. We establish an analog of Carmona’s formula and deduce criteria for absolutely continuous spectrum which we apply to random Hilbert Schmidt perturbations of periodic scattering zippers.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01866-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01866-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On absolutely continuous spectrum for one-channel unitary operators
In this paper, we develop the radial transfer matrix formalism for unitary one-channel operators. This generalizes previous formalisms for CMV matrices and scattering zippers. We establish an analog of Carmona’s formula and deduce criteria for absolutely continuous spectrum which we apply to random Hilbert Schmidt perturbations of periodic scattering zippers.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.