具有通量限制的趋化系统的全局有界解法和大时间行为

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Chun Wu
{"title":"具有通量限制的趋化系统的全局有界解法和大时间行为","authors":"Chun Wu","doi":"10.1007/s10440-024-00690-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the following cross-diffusion system is investigated </p><div><div><span>$$ \\textstyle\\begin{cases} u_{t}=\\nabla \\cdot \\big((u+1)^{m}\\nabla u\\big)-\\nabla \\cdot \\Bigg( \\frac{u(u+1)^{\\beta -1}\\nabla v}{(1+|\\nabla v|^{2})^{\\alpha }}\\Bigg)+a-bu^{r}, \\,\\,&amp; x\\in \\Omega ,\\,\\,t&gt;0, \\\\ 0=\\Delta v-v+u, &amp; x\\in \\Omega ,\\,\\,t&gt;0, \\end{cases} $$</span></div></div><p> in a bounded domain <span>\\(\\Omega \\subset \\mathbb{R}^{n}\\)</span> (<span>\\(n\\ge 2\\)</span>) with smooth boundary <span>\\(\\partial \\Omega \\)</span>. Under the condition that <span>\\(\\alpha &gt;\\frac{2n-mn-2}{2(n-1)}\\)</span>, <span>\\(m\\geq 1\\)</span>, and <span>\\(\\beta \\leq \\frac{m+2}{2}\\)</span>, it is shown that the problem possesses a unique global bounded classical solution. Moreover, it is obtained that the corresponding solution exponentially converge to a constant stationary solution when the initial data <span>\\(u_{0}\\)</span> is sufficiently small.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00690-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Global Bounded Solutions and Large Time Behavior of a Chemotaxis System with Flux Limitation\",\"authors\":\"Chun Wu\",\"doi\":\"10.1007/s10440-024-00690-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the following cross-diffusion system is investigated </p><div><div><span>$$ \\\\textstyle\\\\begin{cases} u_{t}=\\\\nabla \\\\cdot \\\\big((u+1)^{m}\\\\nabla u\\\\big)-\\\\nabla \\\\cdot \\\\Bigg( \\\\frac{u(u+1)^{\\\\beta -1}\\\\nabla v}{(1+|\\\\nabla v|^{2})^{\\\\alpha }}\\\\Bigg)+a-bu^{r}, \\\\,\\\\,&amp; x\\\\in \\\\Omega ,\\\\,\\\\,t&gt;0, \\\\\\\\ 0=\\\\Delta v-v+u, &amp; x\\\\in \\\\Omega ,\\\\,\\\\,t&gt;0, \\\\end{cases} $$</span></div></div><p> in a bounded domain <span>\\\\(\\\\Omega \\\\subset \\\\mathbb{R}^{n}\\\\)</span> (<span>\\\\(n\\\\ge 2\\\\)</span>) with smooth boundary <span>\\\\(\\\\partial \\\\Omega \\\\)</span>. Under the condition that <span>\\\\(\\\\alpha &gt;\\\\frac{2n-mn-2}{2(n-1)}\\\\)</span>, <span>\\\\(m\\\\geq 1\\\\)</span>, and <span>\\\\(\\\\beta \\\\leq \\\\frac{m+2}{2}\\\\)</span>, it is shown that the problem possesses a unique global bounded classical solution. Moreover, it is obtained that the corresponding solution exponentially converge to a constant stationary solution when the initial data <span>\\\\(u_{0}\\\\)</span> is sufficiently small.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-024-00690-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00690-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00690-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了以下交叉扩散系统研究了以下交叉扩散系统 $$ \textstyle\begin{cases} u_{t}=\nabla \cdot \big((u+1)^{m}\nabla u\big)-\frac{u(u+1)^{\beta -1}\nabla v}{(1+|\nabla v|^{2})^{\alpha }}\Bigg)+a-bu^{r}、\,\,&;x\in \Omega ,\,\,t>0,\0=\Delta v-v+u, & x\in \Omega ,\,\,t>0, \end{cases}$ 在一个有边界的域\(\Omega \subset \mathbb{R}^{n}\) (\(n\ge 2\)) with smooth boundary \(\partial \Omega \)中。在\(\alpha >\frac{2n-mn-2}{2(n-1)}\)、\(m\geq 1\) 和\(\beta \leq \frac{m+2}{2})的条件下,可以证明问题具有唯一的全局有界经典解。此外,当初始数据 \(u_{0}\)足够小时,相应的解会以指数形式收敛到一个恒定的静态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Bounded Solutions and Large Time Behavior of a Chemotaxis System with Flux Limitation

In this paper, the following cross-diffusion system is investigated

$$ \textstyle\begin{cases} u_{t}=\nabla \cdot \big((u+1)^{m}\nabla u\big)-\nabla \cdot \Bigg( \frac{u(u+1)^{\beta -1}\nabla v}{(1+|\nabla v|^{2})^{\alpha }}\Bigg)+a-bu^{r}, \,\,& x\in \Omega ,\,\,t>0, \\ 0=\Delta v-v+u, & x\in \Omega ,\,\,t>0, \end{cases} $$

in a bounded domain \(\Omega \subset \mathbb{R}^{n}\) (\(n\ge 2\)) with smooth boundary \(\partial \Omega \). Under the condition that \(\alpha >\frac{2n-mn-2}{2(n-1)}\), \(m\geq 1\), and \(\beta \leq \frac{m+2}{2}\), it is shown that the problem possesses a unique global bounded classical solution. Moreover, it is obtained that the corresponding solution exponentially converge to a constant stationary solution when the initial data \(u_{0}\) is sufficiently small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信