{"title":"具有对数潜力的粘性卡恩-希利亚德系统稀疏最优控制的最优性条件","authors":"Pierluigi Colli, Jürgen Sprekels, Fredi Tröltzsch","doi":"10.1007/s00245-024-10187-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study the optimal control of a parabolic initial-boundary value problem of viscous Cahn–Hilliard type with zero Neumann boundary conditions. Phase field systems of this type govern the evolution of diffusive phase transition processes with conserved order parameter. It is assumed that the nonlinear functions driving the physical processes within the spatial domain are double-well potentials of logarithmic type whose derivatives become singular at the boundary of their respective domains of definition. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a nondifferentiable term like the <span>\\(L^1\\)</span>-norm, which leads to sparsity of optimal controls. For such cases, we establish first-order necessary and second-order sufficient optimality conditions for locally optimal controls. In the approach to second-order sufficient conditions, the main novelty of this paper, we adapt a technique introduced by Casas et al. in the paper (SIAM J Control Optim 53:2168–2202, 2015). In this paper, we show that this method can also be successfully applied to systems of viscous Cahn–Hilliard type with logarithmic nonlinearity. Since the Cahn–Hilliard system corresponds to a fourth-order partial differential equation in contrast to the second-order systems investigated before, additional technical difficulties have to be overcome.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"90 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality Conditions for Sparse Optimal Control of Viscous Cahn–Hilliard Systems with Logarithmic Potential\",\"authors\":\"Pierluigi Colli, Jürgen Sprekels, Fredi Tröltzsch\",\"doi\":\"10.1007/s00245-024-10187-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we study the optimal control of a parabolic initial-boundary value problem of viscous Cahn–Hilliard type with zero Neumann boundary conditions. Phase field systems of this type govern the evolution of diffusive phase transition processes with conserved order parameter. It is assumed that the nonlinear functions driving the physical processes within the spatial domain are double-well potentials of logarithmic type whose derivatives become singular at the boundary of their respective domains of definition. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a nondifferentiable term like the <span>\\\\(L^1\\\\)</span>-norm, which leads to sparsity of optimal controls. For such cases, we establish first-order necessary and second-order sufficient optimality conditions for locally optimal controls. In the approach to second-order sufficient conditions, the main novelty of this paper, we adapt a technique introduced by Casas et al. in the paper (SIAM J Control Optim 53:2168–2202, 2015). In this paper, we show that this method can also be successfully applied to systems of viscous Cahn–Hilliard type with logarithmic nonlinearity. Since the Cahn–Hilliard system corresponds to a fourth-order partial differential equation in contrast to the second-order systems investigated before, additional technical difficulties have to be overcome.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"90 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10187-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10187-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimality Conditions for Sparse Optimal Control of Viscous Cahn–Hilliard Systems with Logarithmic Potential
In this paper we study the optimal control of a parabolic initial-boundary value problem of viscous Cahn–Hilliard type with zero Neumann boundary conditions. Phase field systems of this type govern the evolution of diffusive phase transition processes with conserved order parameter. It is assumed that the nonlinear functions driving the physical processes within the spatial domain are double-well potentials of logarithmic type whose derivatives become singular at the boundary of their respective domains of definition. For such systems, optimal control problems have been studied in the past. We focus here on the situation when the cost functional of the optimal control problem contains a nondifferentiable term like the \(L^1\)-norm, which leads to sparsity of optimal controls. For such cases, we establish first-order necessary and second-order sufficient optimality conditions for locally optimal controls. In the approach to second-order sufficient conditions, the main novelty of this paper, we adapt a technique introduced by Casas et al. in the paper (SIAM J Control Optim 53:2168–2202, 2015). In this paper, we show that this method can also be successfully applied to systems of viscous Cahn–Hilliard type with logarithmic nonlinearity. Since the Cahn–Hilliard system corresponds to a fourth-order partial differential equation in contrast to the second-order systems investigated before, additional technical difficulties have to be overcome.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.