变形)赫米矩阵模型的高阶约束条件

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Rui Wang
{"title":"变形)赫米矩阵模型的高阶约束条件","authors":"Rui Wang","doi":"10.1140/epjc/s10052-024-13377-2","DOIUrl":null,"url":null,"abstract":"<div><p>We construct the (<span>\\(\\beta \\)</span>-deformed) higher order total derivative operators and analyze their remarkable properties. In terms of these operators, we derive the higher order constraints for the (<span>\\(\\beta \\)</span>-deformed) Hermitian matrix models. We prove that these (<span>\\(\\beta \\)</span>-deformed) higher order constraints are reducible to the Virasoro constraints. Meanwhile, the Itoyama–Matsuo conjecture for the constraints of the Hermitian matrix model is proved. We also find that through rescaling variable transformations, two sets of the constraint operators become the <i>W</i>-operators of <i>W</i>-representations for the (<span>\\(\\beta \\)</span>-deformed) partition function hierarchies in the literature.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13377-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Higher order constraints for the (\\\\(\\\\beta \\\\)-deformed) Hermitian matrix models\",\"authors\":\"Rui Wang\",\"doi\":\"10.1140/epjc/s10052-024-13377-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct the (<span>\\\\(\\\\beta \\\\)</span>-deformed) higher order total derivative operators and analyze their remarkable properties. In terms of these operators, we derive the higher order constraints for the (<span>\\\\(\\\\beta \\\\)</span>-deformed) Hermitian matrix models. We prove that these (<span>\\\\(\\\\beta \\\\)</span>-deformed) higher order constraints are reducible to the Virasoro constraints. Meanwhile, the Itoyama–Matsuo conjecture for the constraints of the Hermitian matrix model is proved. We also find that through rescaling variable transformations, two sets of the constraint operators become the <i>W</i>-operators of <i>W</i>-representations for the (<span>\\\\(\\\\beta \\\\)</span>-deformed) partition function hierarchies in the literature.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 10\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13377-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13377-2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13377-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了(\(\beta \)-变形)高阶总导数算子,并分析了它们的显著性质。根据这些算子,我们推导出了((beta)-变形)赫米矩阵模型的高阶约束。我们证明了这些((\(beta \)-变形)高阶约束可还原为维拉索罗约束。同时,我们还证明了赫尔米特矩阵模型约束的伊藤山松猜想。我们还发现,通过重定标变量变换,两组约束算子成为文献中((beta)-变形)分治函数层次的 W-operators 的 W-representations 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher order constraints for the (\(\beta \)-deformed) Hermitian matrix models

We construct the (\(\beta \)-deformed) higher order total derivative operators and analyze their remarkable properties. In terms of these operators, we derive the higher order constraints for the (\(\beta \)-deformed) Hermitian matrix models. We prove that these (\(\beta \)-deformed) higher order constraints are reducible to the Virasoro constraints. Meanwhile, the Itoyama–Matsuo conjecture for the constraints of the Hermitian matrix model is proved. We also find that through rescaling variable transformations, two sets of the constraint operators become the W-operators of W-representations for the (\(\beta \)-deformed) partition function hierarchies in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信