{"title":"4-(1H-吲哚-3-基)-N′-[(E/Z)-(苯基取代)亚甲基]作为 α-葡萄糖苷酶有效抑制剂的合成、体外和硅学研究","authors":"M. Nazir, U. Khan, M. Jahangir","doi":"10.1134/S1068162024050157","DOIUrl":null,"url":null,"abstract":"<p><b>Objective:</b> The study commenced with the conversion of 4-(1<i>H</i>-indol-3-yl)butanoic acid (<b>I</b>) into ethyl 4-(1<i>H</i>-indol-3-yl)butanoate (<b>II</b>), succeeded by the synthesis of the hydrazide nucleophile, 4-(1<i>H</i>-indol-3-yl)butanohydrazide (<b>III</b>). <b>Methods:</b> Following this, nucleophilic addition reactions of (<b>III</b>) with various electrophilic aldehydes (<b>IVa–IVg</b>) were conducted to yield the targeted derivatives (<b>Va–Vg</b>/<b>Vʹa–Vʹg</b>). The structural elucidation of all synthesized compounds relied on IR, <sup>1</sup>H, <sup>13</sup>C NMR, HMBC, and CHN analysis. <b>Results and Discussion:</b> Evaluation of the inhibitory effects of these heterocyclic butanohydrazides (<b>Va–Vg</b>/<b>Vʹa–Vʹg</b>) against the α-glucosidase enzyme revealed significant inhibition by compounds (<b>Vg/Vʹg</b>) compared to the standard. <b>Conclusions:</b> Hemolytic analysis indicated mild cytotoxicity towards red blood cell membranes, indicating the potential of these molecules as nontoxic medicinal scaffolds for skin pigmentation and related disorders.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"1998 - 2012"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, In Vitro and In Silico Investigations of 4-(1H-Indol-3-yl)-N′-[(E/Z)-(phenyl-substituted)methylidene] as Effective Inhibitors of α-Glucosidase\",\"authors\":\"M. Nazir, U. Khan, M. Jahangir\",\"doi\":\"10.1134/S1068162024050157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Objective:</b> The study commenced with the conversion of 4-(1<i>H</i>-indol-3-yl)butanoic acid (<b>I</b>) into ethyl 4-(1<i>H</i>-indol-3-yl)butanoate (<b>II</b>), succeeded by the synthesis of the hydrazide nucleophile, 4-(1<i>H</i>-indol-3-yl)butanohydrazide (<b>III</b>). <b>Methods:</b> Following this, nucleophilic addition reactions of (<b>III</b>) with various electrophilic aldehydes (<b>IVa–IVg</b>) were conducted to yield the targeted derivatives (<b>Va–Vg</b>/<b>Vʹa–Vʹg</b>). The structural elucidation of all synthesized compounds relied on IR, <sup>1</sup>H, <sup>13</sup>C NMR, HMBC, and CHN analysis. <b>Results and Discussion:</b> Evaluation of the inhibitory effects of these heterocyclic butanohydrazides (<b>Va–Vg</b>/<b>Vʹa–Vʹg</b>) against the α-glucosidase enzyme revealed significant inhibition by compounds (<b>Vg/Vʹg</b>) compared to the standard. <b>Conclusions:</b> Hemolytic analysis indicated mild cytotoxicity towards red blood cell membranes, indicating the potential of these molecules as nontoxic medicinal scaffolds for skin pigmentation and related disorders.</p>\",\"PeriodicalId\":758,\"journal\":{\"name\":\"Russian Journal of Bioorganic Chemistry\",\"volume\":\"50 5\",\"pages\":\"1998 - 2012\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1068162024050157\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162024050157","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis, In Vitro and In Silico Investigations of 4-(1H-Indol-3-yl)-N′-[(E/Z)-(phenyl-substituted)methylidene] as Effective Inhibitors of α-Glucosidase
Objective: The study commenced with the conversion of 4-(1H-indol-3-yl)butanoic acid (I) into ethyl 4-(1H-indol-3-yl)butanoate (II), succeeded by the synthesis of the hydrazide nucleophile, 4-(1H-indol-3-yl)butanohydrazide (III). Methods: Following this, nucleophilic addition reactions of (III) with various electrophilic aldehydes (IVa–IVg) were conducted to yield the targeted derivatives (Va–Vg/Vʹa–Vʹg). The structural elucidation of all synthesized compounds relied on IR, 1H, 13C NMR, HMBC, and CHN analysis. Results and Discussion: Evaluation of the inhibitory effects of these heterocyclic butanohydrazides (Va–Vg/Vʹa–Vʹg) against the α-glucosidase enzyme revealed significant inhibition by compounds (Vg/Vʹg) compared to the standard. Conclusions: Hemolytic analysis indicated mild cytotoxicity towards red blood cell membranes, indicating the potential of these molecules as nontoxic medicinal scaffolds for skin pigmentation and related disorders.
期刊介绍:
Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.