{"title":"香豆素衍生物的合成及其在药物化学中的重要性:全面回顾","authors":"Mahima Samanth, Mahesh Bhat","doi":"10.1134/S1068162024050108","DOIUrl":null,"url":null,"abstract":"<p>Coumarins are the natural products which are characterized as 1,2-benzopyrones. The discovery of coumarins is done with enlarged chemical space through many synthetic course of action. They are found in many plants such as cinnamon, tonka beans, and sweet clover. Cassia cinnamon has the highest amount of coumarin whereas Ceylon cinnamon has the lowest. Many biological activities and applications of coumarins are attributed to their capacity to engage in non-covalent interactions with numerous enzymes and receptors found in living organisms. Some of the pharmacological properties are anticancer, anticoagulant, antifungal, antiviral, antitubercular, antioxidant, anti-inflammatory, antidiabetic, antibacteria, antihypertensive, antihyperglycemic, anticonvulsant, antiparasitic, antineurodegenerative, etc. A review has been carried out based on various pharmacological activities containing Coumarin derivatives to rationalize the activities based on the structural variations. Coumarin derivatives have been attracting increasing interest for their usefulness and excellent contribution in the prevention, curing, and treatment of the diseases, growth modulation, cell growth and regulation of immune response.</p>","PeriodicalId":758,"journal":{"name":"Russian Journal of Bioorganic Chemistry","volume":"50 5","pages":"1672 - 1691"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Importance of Coumarin Derivatives in Medicinal Chemistry: A Comprehensive Review\",\"authors\":\"Mahima Samanth, Mahesh Bhat\",\"doi\":\"10.1134/S1068162024050108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coumarins are the natural products which are characterized as 1,2-benzopyrones. The discovery of coumarins is done with enlarged chemical space through many synthetic course of action. They are found in many plants such as cinnamon, tonka beans, and sweet clover. Cassia cinnamon has the highest amount of coumarin whereas Ceylon cinnamon has the lowest. Many biological activities and applications of coumarins are attributed to their capacity to engage in non-covalent interactions with numerous enzymes and receptors found in living organisms. Some of the pharmacological properties are anticancer, anticoagulant, antifungal, antiviral, antitubercular, antioxidant, anti-inflammatory, antidiabetic, antibacteria, antihypertensive, antihyperglycemic, anticonvulsant, antiparasitic, antineurodegenerative, etc. A review has been carried out based on various pharmacological activities containing Coumarin derivatives to rationalize the activities based on the structural variations. Coumarin derivatives have been attracting increasing interest for their usefulness and excellent contribution in the prevention, curing, and treatment of the diseases, growth modulation, cell growth and regulation of immune response.</p>\",\"PeriodicalId\":758,\"journal\":{\"name\":\"Russian Journal of Bioorganic Chemistry\",\"volume\":\"50 5\",\"pages\":\"1672 - 1691\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1068162024050108\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1068162024050108","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synthesis and Importance of Coumarin Derivatives in Medicinal Chemistry: A Comprehensive Review
Coumarins are the natural products which are characterized as 1,2-benzopyrones. The discovery of coumarins is done with enlarged chemical space through many synthetic course of action. They are found in many plants such as cinnamon, tonka beans, and sweet clover. Cassia cinnamon has the highest amount of coumarin whereas Ceylon cinnamon has the lowest. Many biological activities and applications of coumarins are attributed to their capacity to engage in non-covalent interactions with numerous enzymes and receptors found in living organisms. Some of the pharmacological properties are anticancer, anticoagulant, antifungal, antiviral, antitubercular, antioxidant, anti-inflammatory, antidiabetic, antibacteria, antihypertensive, antihyperglycemic, anticonvulsant, antiparasitic, antineurodegenerative, etc. A review has been carried out based on various pharmacological activities containing Coumarin derivatives to rationalize the activities based on the structural variations. Coumarin derivatives have been attracting increasing interest for their usefulness and excellent contribution in the prevention, curing, and treatment of the diseases, growth modulation, cell growth and regulation of immune response.
期刊介绍:
Russian Journal of Bioorganic Chemistry publishes reviews and original experimental and theoretical studies on the structure, function, structure–activity relationships, and synthesis of biopolymers, such as proteins, nucleic acids, polysaccharides, mixed biopolymers, and their complexes, and low-molecular-weight biologically active compounds (peptides, sugars, lipids, antibiotics, etc.). The journal also covers selected aspects of neuro- and immunochemistry, biotechnology, and ecology.