基于物联网和大数据的电力用户行为分析和营销策略

Q2 Energy
Wei Ge, Bo Chen
{"title":"基于物联网和大数据的电力用户行为分析和营销策略","authors":"Wei Ge,&nbsp;Bo Chen","doi":"10.1186/s42162-024-00397-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines power user behavior and the design of marketing strategies, using a case study of Smart Community A. We explore how advanced analytical models are used to enhance energy efficiency and user services. First, we apply spectral clustering to refine user segmentation and identify distinct electricity consumption patterns among different groups. Then, the Hidden Markov Model (HMM) analyzes user behavior, uncovering shifts in consumption habits and enabling personalized service offerings. Next, the ARIMA model predicts electricity consumption trends, guiding grid scheduling and resource allocation. Based on these analyses, we develop targeted marketing strategies, such as dynamic pricing and energy-saving incentives, which boost user engagement and reduce energy usage. Through an IoT and big data-driven interactive marketing platform, we enhance user experience and foster a culture of energy conservation. Finally, a feedback mechanism ensures continuous improvement and maximizes the effectiveness of the marketing strategies.</p></div>","PeriodicalId":538,"journal":{"name":"Energy Informatics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s42162-024-00397-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Electricity user behavior analysis and marketing strategy based on internet of things and big data\",\"authors\":\"Wei Ge,&nbsp;Bo Chen\",\"doi\":\"10.1186/s42162-024-00397-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines power user behavior and the design of marketing strategies, using a case study of Smart Community A. We explore how advanced analytical models are used to enhance energy efficiency and user services. First, we apply spectral clustering to refine user segmentation and identify distinct electricity consumption patterns among different groups. Then, the Hidden Markov Model (HMM) analyzes user behavior, uncovering shifts in consumption habits and enabling personalized service offerings. Next, the ARIMA model predicts electricity consumption trends, guiding grid scheduling and resource allocation. Based on these analyses, we develop targeted marketing strategies, such as dynamic pricing and energy-saving incentives, which boost user engagement and reduce energy usage. Through an IoT and big data-driven interactive marketing platform, we enhance user experience and foster a culture of energy conservation. Finally, a feedback mechanism ensures continuous improvement and maximizes the effectiveness of the marketing strategies.</p></div>\",\"PeriodicalId\":538,\"journal\":{\"name\":\"Energy Informatics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s42162-024-00397-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s42162-024-00397-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Informatics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s42162-024-00397-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文通过智能社区 A 的案例研究,探讨了电力用户行为和营销策略的设计。首先,我们应用频谱聚类来细化用户细分,并识别不同群体之间截然不同的用电模式。然后,隐马尔可夫模型(HMM)分析用户行为,发现消费习惯的变化,从而提供个性化服务。接着,ARIMA 模型预测用电趋势,指导电网调度和资源分配。基于这些分析,我们制定了有针对性的营销策略,如动态定价和节能激励措施,从而提高用户参与度,减少能源使用量。通过物联网和大数据驱动的互动营销平台,我们提升了用户体验,培养了节能文化。最后,反馈机制可确保持续改进,最大限度地提高营销策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electricity user behavior analysis and marketing strategy based on internet of things and big data

This paper examines power user behavior and the design of marketing strategies, using a case study of Smart Community A. We explore how advanced analytical models are used to enhance energy efficiency and user services. First, we apply spectral clustering to refine user segmentation and identify distinct electricity consumption patterns among different groups. Then, the Hidden Markov Model (HMM) analyzes user behavior, uncovering shifts in consumption habits and enabling personalized service offerings. Next, the ARIMA model predicts electricity consumption trends, guiding grid scheduling and resource allocation. Based on these analyses, we develop targeted marketing strategies, such as dynamic pricing and energy-saving incentives, which boost user engagement and reduce energy usage. Through an IoT and big data-driven interactive marketing platform, we enhance user experience and foster a culture of energy conservation. Finally, a feedback mechanism ensures continuous improvement and maximizes the effectiveness of the marketing strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Informatics
Energy Informatics Computer Science-Computer Networks and Communications
CiteScore
5.50
自引率
0.00%
发文量
34
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信