{"title":"薛定谔映射方程的伪随机性","authors":"Sandeep Kumar","doi":"10.1007/s10440-024-00687-6","DOIUrl":null,"url":null,"abstract":"<div><p>A unique behaviour of the Schrödinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schrödinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"193 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00687-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Pseudorandomness of the Schrödinger Map Equation\",\"authors\":\"Sandeep Kumar\",\"doi\":\"10.1007/s10440-024-00687-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A unique behaviour of the Schrödinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schrödinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"193 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10440-024-00687-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00687-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00687-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A unique behaviour of the Schrödinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schrödinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.