论邓克尔算子正交斯特里查兹估计中的沙腾指数

IF 1.4 3区 数学 Q1 MATHEMATICS
Sunit Ghosh, Jitendriya Swain
{"title":"论邓克尔算子正交斯特里查兹估计中的沙腾指数","authors":"Sunit Ghosh,&nbsp;Jitendriya Swain","doi":"10.1007/s13324-024-00970-7","DOIUrl":null,"url":null,"abstract":"<div><p>The orthonormal Strichartz estimates for the Schrödinger equation associated to the Dunkl Laplacian and the Dunkl-Hermite operator are derived in Senapati et al. (J Geom Anal 34:74, 2024) and Mondal and Song (Israel J Math, 2023). In this article we construct a set of coherent states in the Dunkl setting and apply semi-classical analysis to derive a necessary condition on the Schatten exponent for the aforementioned orthonormal Strichartz estimates, which turns out to be optimal for the Schrödinger equations associated with Laplacian and Hermite operator as a particular case.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Schatten exponent in orthonormal Strichartz estimate for the Dunkl operators\",\"authors\":\"Sunit Ghosh,&nbsp;Jitendriya Swain\",\"doi\":\"10.1007/s13324-024-00970-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The orthonormal Strichartz estimates for the Schrödinger equation associated to the Dunkl Laplacian and the Dunkl-Hermite operator are derived in Senapati et al. (J Geom Anal 34:74, 2024) and Mondal and Song (Israel J Math, 2023). In this article we construct a set of coherent states in the Dunkl setting and apply semi-classical analysis to derive a necessary condition on the Schatten exponent for the aforementioned orthonormal Strichartz estimates, which turns out to be optimal for the Schrödinger equations associated with Laplacian and Hermite operator as a particular case.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00970-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00970-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Senapati 等人(J Geom Anal 34:74, 2024)以及 Mondal 和 Song(Israel J Math, 2023)推导了与 Dunkl 拉普拉奇和 Dunkl-Hermite 算子相关的薛定谔方程的正交 Strichartz 估计。在本文中,我们构建了一组 Dunkl 设置中的相干态,并应用半经典分析推导出了上述正交 Strichartz 估计的 Schatten 指数的必要条件,结果证明该条件对于与拉普拉斯和赫尔米特算子相关的薛定谔方程是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Schatten exponent in orthonormal Strichartz estimate for the Dunkl operators

The orthonormal Strichartz estimates for the Schrödinger equation associated to the Dunkl Laplacian and the Dunkl-Hermite operator are derived in Senapati et al. (J Geom Anal 34:74, 2024) and Mondal and Song (Israel J Math, 2023). In this article we construct a set of coherent states in the Dunkl setting and apply semi-classical analysis to derive a necessary condition on the Schatten exponent for the aforementioned orthonormal Strichartz estimates, which turns out to be optimal for the Schrödinger equations associated with Laplacian and Hermite operator as a particular case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信