度量空间的同托邦模型与完备性

IF 0.6 4区 数学 Q3 MATHEMATICS
Isaiah Dailey, Clara Huggins, Semir Mujevic, Chloe Shupe
{"title":"度量空间的同托邦模型与完备性","authors":"Isaiah Dailey,&nbsp;Clara Huggins,&nbsp;Semir Mujevic,&nbsp;Chloe Shupe","doi":"10.1007/s10485-024-09788-7","DOIUrl":null,"url":null,"abstract":"<div><p>Categories enriched in the opposite poset of non-negative reals can be viewed as generalizations of metric spaces, known as Lawvere metric spaces. In this article, we develop model structures on the categories <span>\\({\\mathbb {R}_+\\text {-}\\textbf{Cat}}\\)</span> and <span>\\({\\mathbb {R}_+\\text {-}\\textbf{Cat}}^\\textrm{sym}\\)</span> of Lawvere metric spaces and symmetric Lawvere metric spaces, each of which captures different features pertinent to the study of metric spaces. More precisely, in the three model structures we construct, the fibrant–cofibrant objects are the extended metric spaces (in the usual sense), the Cauchy complete Lawvere metric spaces, and the Cauchy complete extended metric spaces, respectively. Finally, we show that two of these model structures are unique in a similar way to the canonical model structure on <span>\\(\\textbf{Cat}\\)</span>.\n</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 6","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homotopical Models for Metric Spaces and Completeness\",\"authors\":\"Isaiah Dailey,&nbsp;Clara Huggins,&nbsp;Semir Mujevic,&nbsp;Chloe Shupe\",\"doi\":\"10.1007/s10485-024-09788-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Categories enriched in the opposite poset of non-negative reals can be viewed as generalizations of metric spaces, known as Lawvere metric spaces. In this article, we develop model structures on the categories <span>\\\\({\\\\mathbb {R}_+\\\\text {-}\\\\textbf{Cat}}\\\\)</span> and <span>\\\\({\\\\mathbb {R}_+\\\\text {-}\\\\textbf{Cat}}^\\\\textrm{sym}\\\\)</span> of Lawvere metric spaces and symmetric Lawvere metric spaces, each of which captures different features pertinent to the study of metric spaces. More precisely, in the three model structures we construct, the fibrant–cofibrant objects are the extended metric spaces (in the usual sense), the Cauchy complete Lawvere metric spaces, and the Cauchy complete extended metric spaces, respectively. Finally, we show that two of these model structures are unique in a similar way to the canonical model structure on <span>\\\\(\\\\textbf{Cat}\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 6\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09788-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09788-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在非负实数的相反poset中丰富的范畴可以被看作是度量空间的广义化,即Lawvere度量空间。在本文中,我们在 Lawvere 度量空间和对称 Lawvere 度量空间的范畴 \({\mathbb {R}_\+text {-}\textbf{Cat}}\) 和 \({\mathbb {R}_\+text {-}\textbf{Cat}}^\textrm{sym}\) 上建立了模型结构,每个模型结构都捕捉到了与度量空间研究相关的不同特征。更确切地说,在我们构建的三个模型结构中,纤维纤胞对象分别是扩展度量空间(通常意义上)、Cauchy 完全 Lawvere 度量空间和 Cauchy 完全扩展度量空间。最后,我们以类似于 \(\textbf{Cat}\) 上的典型模型结构的方式证明了其中两个模型结构是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopical Models for Metric Spaces and Completeness

Categories enriched in the opposite poset of non-negative reals can be viewed as generalizations of metric spaces, known as Lawvere metric spaces. In this article, we develop model structures on the categories \({\mathbb {R}_+\text {-}\textbf{Cat}}\) and \({\mathbb {R}_+\text {-}\textbf{Cat}}^\textrm{sym}\) of Lawvere metric spaces and symmetric Lawvere metric spaces, each of which captures different features pertinent to the study of metric spaces. More precisely, in the three model structures we construct, the fibrant–cofibrant objects are the extended metric spaces (in the usual sense), the Cauchy complete Lawvere metric spaces, and the Cauchy complete extended metric spaces, respectively. Finally, we show that two of these model structures are unique in a similar way to the canonical model structure on \(\textbf{Cat}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信