离散潘列维方程 II 解中的内过渡层

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
V.Yu. Novokshenov
{"title":"离散潘列维方程 II 解中的内过渡层","authors":"V.Yu. Novokshenov","doi":"10.1134/S1061920824030130","DOIUrl":null,"url":null,"abstract":"<p> We study real-valued asymptotic solutions of the discrete Painlevé equation of second type (dPII) </p><p> In the case of <span>\\(n/\\nu = O(1)\\)</span>, and as <span>\\(n\\to\\infty\\)</span>, the asymptotics is nonuniform. Near the point <span>\\(n= 2\\nu\\)</span>, an <i> inner transition layer</i> occurs, which matches regular asymptotics to the left and to the right of this point. The matching procedure involves classical Painlevé II transcendents. The asymptotics are applied to discrete gap probabilities and random matrix theory. </p><p> <b> DOI</b> 10.1134/S1061920824030130 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"517 - 525"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inner Transition Layer in Solutions of the Discrete Painlevé II Equation\",\"authors\":\"V.Yu. Novokshenov\",\"doi\":\"10.1134/S1061920824030130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We study real-valued asymptotic solutions of the discrete Painlevé equation of second type (dPII) </p><p> In the case of <span>\\\\(n/\\\\nu = O(1)\\\\)</span>, and as <span>\\\\(n\\\\to\\\\infty\\\\)</span>, the asymptotics is nonuniform. Near the point <span>\\\\(n= 2\\\\nu\\\\)</span>, an <i> inner transition layer</i> occurs, which matches regular asymptotics to the left and to the right of this point. The matching procedure involves classical Painlevé II transcendents. The asymptotics are applied to discrete gap probabilities and random matrix theory. </p><p> <b> DOI</b> 10.1134/S1061920824030130 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"517 - 525\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030130\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了第二类离散潘列维方程(dPII)的实值渐近解 在 \(n/\nu = O(1)\) 的情况下,当 \(n\to\infty\) 时,渐近是不均匀的。在点\(n= 2\nu\) 附近,会出现一个内部过渡层,它与该点左侧和右侧的规则渐近线相匹配。匹配过程涉及经典的潘列韦 II 超越。渐近线被应用于离散间隙概率和随机矩阵理论。 doi 10.1134/s1061920824030130
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inner Transition Layer in Solutions of the Discrete Painlevé II Equation

We study real-valued asymptotic solutions of the discrete Painlevé equation of second type (dPII)

In the case of \(n/\nu = O(1)\), and as \(n\to\infty\), the asymptotics is nonuniform. Near the point \(n= 2\nu\), an inner transition layer occurs, which matches regular asymptotics to the left and to the right of this point. The matching procedure involves classical Painlevé II transcendents. The asymptotics are applied to discrete gap probabilities and random matrix theory.

DOI 10.1134/S1061920824030130

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信