具有 KPZ 非线性的季霍诺夫型反应-扩散-平流系统中周期抛物问题的解的存在性和渐近稳定性

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
E.I. Nikulin, N.N. Nefedov, A.O. Orlov
{"title":"具有 KPZ 非线性的季霍诺夫型反应-扩散-平流系统中周期抛物问题的解的存在性和渐近稳定性","authors":"E.I. Nikulin,&nbsp;N.N. Nefedov,&nbsp;A.O. Orlov","doi":"10.1134/S1061920824030129","DOIUrl":null,"url":null,"abstract":"<p> This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. </p><p> <b> DOI</b> 10.1134/S1061920824030129 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"504 - 516"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities\",\"authors\":\"E.I. Nikulin,&nbsp;N.N. Nefedov,&nbsp;A.O. Orlov\",\"doi\":\"10.1134/S1061920824030129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability. </p><p> <b> DOI</b> 10.1134/S1061920824030129 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"504 - 516\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030129\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030129","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究奇异扰动 Tikhonov 反应-扩散-对流方程系统的时周期解,其非线性包括未知函数梯度的平方(KPZ 非线性)。针对 Neumann 和 Dirichlet 边界条件,构建了解的边界层渐近线。研究既考虑了准单调源的情况,也考虑了无准单调性条件的系统。利用微分不等式的渐近方法证明了解的存在性及其 Lyapunov 渐进稳定性定理。 doi 10.1134/s1061920824030129
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Asymptotic Stability of Solutions for Periodic Parabolic Problems in Tikhonov-Type Reaction–Diffusion–Advection Systems with KPZ Nonlinearities

This paper studies time-periodic solutions of singularly perturbed Tikhonov systems of reaction–diffusion–advection equations with nonlinearities that include the square of the gradient of the unknown function (KPZ nonlinearities). The boundary layer asymptotics of solutions are constructed for Neumann and Dirichlet boundary conditions. The study considers both the case of quasimonotone sources and systems without the quasimonotonicity condition. The asymptotic method of differential inequalities is used to prove theorems on the existence of solutions and their Lyapunov asymptotic stability.

DOI 10.1134/S1061920824030129

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信