{"title":"奇异扰动理论问题中的斯托克斯现象和频谱焦点","authors":"A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev","doi":"10.1134/S1061920824030026","DOIUrl":null,"url":null,"abstract":"<p> The paper deals with the spectral localization in a model problem of singular perturbation theory and the role of the Stokes phenomenon in this context. We study some typical properties of the asymptotic distribution of eigenvalues and, in particular, topologically different types of the spectral configurations in the semiclassical approximation. In this setting the question naturally arises about the corresponding spectral dynamics and the deformation of the actual limit spectral configurations. </p><p> <b> DOI</b> 10.1134/S1061920824030026 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"351 - 378"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory\",\"authors\":\"A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev\",\"doi\":\"10.1134/S1061920824030026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The paper deals with the spectral localization in a model problem of singular perturbation theory and the role of the Stokes phenomenon in this context. We study some typical properties of the asymptotic distribution of eigenvalues and, in particular, topologically different types of the spectral configurations in the semiclassical approximation. In this setting the question naturally arises about the corresponding spectral dynamics and the deformation of the actual limit spectral configurations. </p><p> <b> DOI</b> 10.1134/S1061920824030026 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"351 - 378\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030026\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论奇异扰动理论模型问题中的谱局部化以及斯托克斯现象在其中的作用。我们研究了特征值渐近分布的一些典型性质,特别是半经典近似中拓扑不同类型的谱配置。在这种情况下,自然会产生相应的谱动力学和实际极限谱构型变形的问题。 doi 10.1134/s1061920824030026
Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory
The paper deals with the spectral localization in a model problem of singular perturbation theory and the role of the Stokes phenomenon in this context. We study some typical properties of the asymptotic distribution of eigenvalues and, in particular, topologically different types of the spectral configurations in the semiclassical approximation. In this setting the question naturally arises about the corresponding spectral dynamics and the deformation of the actual limit spectral configurations.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.