描述突变场中 (2+1)- 迪拉克方程的电子-空穴相互作用和克莱因效应的准经典渐近线

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
A.I. Allilueva, A.I. Shafarevich
{"title":"描述突变场中 (2+1)- 迪拉克方程的电子-空穴相互作用和克莱因效应的准经典渐近线","authors":"A.I. Allilueva,&nbsp;A.I. Shafarevich","doi":"10.1134/S1061920824030014","DOIUrl":null,"url":null,"abstract":"<p> Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter. </p><p> <b> DOI</b> 10.1134/S1061920824030014 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"339 - 350"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Classical Asymptotics Describing the Electron-Hole Interaction and the Klein Effect for the (2+1)-Dirac Equation in Abruptly Varying Fields\",\"authors\":\"A.I. Allilueva,&nbsp;A.I. Shafarevich\",\"doi\":\"10.1134/S1061920824030014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter. </p><p> <b> DOI</b> 10.1134/S1061920824030014 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"339 - 350\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030014\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用狄拉克方程考奇问题中的马斯洛夫典型算子,我们考虑了势不规则地依赖于一个小参数的考奇问题解的渐近性。 doi 10.1134/s1061920824030014
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasi-Classical Asymptotics Describing the Electron-Hole Interaction and the Klein Effect for the (2+1)-Dirac Equation in Abruptly Varying Fields

Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter.

DOI 10.1134/S1061920824030014

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信