{"title":"描述突变场中 (2+1)- 迪拉克方程的电子-空穴相互作用和克莱因效应的准经典渐近线","authors":"A.I. Allilueva, A.I. Shafarevich","doi":"10.1134/S1061920824030014","DOIUrl":null,"url":null,"abstract":"<p> Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter. </p><p> <b> DOI</b> 10.1134/S1061920824030014 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"339 - 350"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quasi-Classical Asymptotics Describing the Electron-Hole Interaction and the Klein Effect for the (2+1)-Dirac Equation in Abruptly Varying Fields\",\"authors\":\"A.I. Allilueva, A.I. Shafarevich\",\"doi\":\"10.1134/S1061920824030014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter. </p><p> <b> DOI</b> 10.1134/S1061920824030014 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"339 - 350\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030014\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
利用狄拉克方程考奇问题中的马斯洛夫典型算子,我们考虑了势不规则地依赖于一个小参数的考奇问题解的渐近性。 doi 10.1134/s1061920824030014
Quasi-Classical Asymptotics Describing the Electron-Hole Interaction and the Klein Effect for the (2+1)-Dirac Equation in Abruptly Varying Fields
Using Maslov’s canonical operator in the Cauchy problem for a Dirac equation, we consider the asymptotics of the solution of the Cauchy problem in which the potential depends irregularly on a small parameter.
期刊介绍:
Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.