被薄弹性膜覆盖的声学介质容器边缘附近的渐近特征模定位

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
M.A. Lyalinov
{"title":"被薄弹性膜覆盖的声学介质容器边缘附近的渐近特征模定位","authors":"M.A. Lyalinov","doi":"10.1134/S1061920824030105","DOIUrl":null,"url":null,"abstract":"<p> The paper deals with the formal short-wavelength asymptotic solutions describing the acoustic eigenoscillations in a vessel having a hard bottom, filled in by an acoustic medium, and covered by a thin elastic membrane. The solutions are localized in the medium near the line of the rigid contact of the membrane covering the vessel with the edge of the vessel. The coefficients in the asymptotic expansion of the solutions satisfy a recurrent sequence of solvable problems, whereas the frequencies, for which such nontrivial formal solutions exist, obey an asymptotic ‘quantization-type condition. </p><p> <b> DOI</b> 10.1134/S1061920824030105 </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"477 - 494"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Eigenmodes Localized Near the Edge of a Vessel, with Acoustic Medium, Which Is Covered by a Thin Elastic Membrane\",\"authors\":\"M.A. Lyalinov\",\"doi\":\"10.1134/S1061920824030105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> The paper deals with the formal short-wavelength asymptotic solutions describing the acoustic eigenoscillations in a vessel having a hard bottom, filled in by an acoustic medium, and covered by a thin elastic membrane. The solutions are localized in the medium near the line of the rigid contact of the membrane covering the vessel with the edge of the vessel. The coefficients in the asymptotic expansion of the solutions satisfy a recurrent sequence of solvable problems, whereas the frequencies, for which such nontrivial formal solutions exist, obey an asymptotic ‘quantization-type condition. </p><p> <b> DOI</b> 10.1134/S1061920824030105 </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"477 - 494\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061920824030105\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1061920824030105","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了描述一个具有坚硬底部、由声学介质填充并由薄弹性膜覆盖的容器中声学特征振荡的形式短波长渐近解。这些解都集中在覆盖容器的薄膜与容器边缘刚性接触线附近的介质中。解的渐近展开中的系数满足可解问题的重复序列,而存在这种非微不足道的形式解的频率则服从渐近 "量子化类型条件"。 doi 10.1134/s1061920824030105
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Eigenmodes Localized Near the Edge of a Vessel, with Acoustic Medium, Which Is Covered by a Thin Elastic Membrane

The paper deals with the formal short-wavelength asymptotic solutions describing the acoustic eigenoscillations in a vessel having a hard bottom, filled in by an acoustic medium, and covered by a thin elastic membrane. The solutions are localized in the medium near the line of the rigid contact of the membrane covering the vessel with the edge of the vessel. The coefficients in the asymptotic expansion of the solutions satisfy a recurrent sequence of solvable problems, whereas the frequencies, for which such nontrivial formal solutions exist, obey an asymptotic ‘quantization-type condition.

DOI 10.1134/S1061920824030105

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信