论非自交准周期算子的点谱

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
D.I. Borisov, A.A. Fedotov
{"title":"论非自交准周期算子的点谱","authors":"D.I. Borisov,&nbsp;A.A. Fedotov","doi":"10.1134/S106192082403004X","DOIUrl":null,"url":null,"abstract":"<p> We consider a difference operator acting in <span>\\(l^2(\\mathbb Z)\\)</span> by the formula <span>\\(( \\mathcal{A} \\psi)_n=\\psi_{n+1}+\\psi_{n-1}+\\lambda e^{-2\\pi \\mathrm{i} (\\theta+\\omega n)} \\psi_n\\)</span>, <span>\\(n\\in \\mathbb{Z}\\)</span>, where <span>\\(\\omega\\in(0,1)\\)</span>, <span>\\(\\lambda&gt;0\\)</span>, and <span>\\(\\theta\\in [0,1]\\)</span> are parameters. This operator was introduced by P. Sarnak in 1982. For <span>\\(\\omega\\not\\in \\mathbb Q\\)</span>, the operator <span>\\( \\mathcal{A} \\)</span> is quasiperiodic. Previously, within the framework of a renormalization approach (monodromization method), we described the location of the spectrum of this operator. In the present work, we first establish the existence of the point spectrum for different values of parameters, and then study the eigenfunctions. To do so, using ideas of the renormalization approach, we study the difference operator on the circle obtained from the original one by the Fourier transform. This allows us, first, to obtain a new type condition guaranteeing the existence of point spectrum and, second, to describe in detail a multi-scale self-similar structure of the Fourier transforms of the eigenfunctions. </p><p> <b> DOI</b> 10.1134/S106192082403004X </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"31 3","pages":"389 - 406"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Point Spectrum of a Non-Self-Adjoint Quasiperiodic Operator\",\"authors\":\"D.I. Borisov,&nbsp;A.A. Fedotov\",\"doi\":\"10.1134/S106192082403004X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider a difference operator acting in <span>\\\\(l^2(\\\\mathbb Z)\\\\)</span> by the formula <span>\\\\(( \\\\mathcal{A} \\\\psi)_n=\\\\psi_{n+1}+\\\\psi_{n-1}+\\\\lambda e^{-2\\\\pi \\\\mathrm{i} (\\\\theta+\\\\omega n)} \\\\psi_n\\\\)</span>, <span>\\\\(n\\\\in \\\\mathbb{Z}\\\\)</span>, where <span>\\\\(\\\\omega\\\\in(0,1)\\\\)</span>, <span>\\\\(\\\\lambda&gt;0\\\\)</span>, and <span>\\\\(\\\\theta\\\\in [0,1]\\\\)</span> are parameters. This operator was introduced by P. Sarnak in 1982. For <span>\\\\(\\\\omega\\\\not\\\\in \\\\mathbb Q\\\\)</span>, the operator <span>\\\\( \\\\mathcal{A} \\\\)</span> is quasiperiodic. Previously, within the framework of a renormalization approach (monodromization method), we described the location of the spectrum of this operator. In the present work, we first establish the existence of the point spectrum for different values of parameters, and then study the eigenfunctions. To do so, using ideas of the renormalization approach, we study the difference operator on the circle obtained from the original one by the Fourier transform. This allows us, first, to obtain a new type condition guaranteeing the existence of point spectrum and, second, to describe in detail a multi-scale self-similar structure of the Fourier transforms of the eigenfunctions. </p><p> <b> DOI</b> 10.1134/S106192082403004X </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"31 3\",\"pages\":\"389 - 406\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082403004X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082403004X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个作用于(l^2(\mathbb Z)\)的差分算子,公式为\((\mathcal{A} \psi)_n=\psi_{n+1}+\psi_{n-1}+\lambda e^{-2\pi \mathrm{i} (\theta+\omega n)} \psi_n\)、\(n在mathbb{Z}中), where \(\omega\in(0,1)\),\(\lambda>;0)和(theta/in [0,1])都是参数。该算子由 P. Sarnak 于 1982 年引入。对于 \(\omega\not\in \mathbb Q\), 算子 \( \mathcal{A} \) 是准周期的。在此之前,我们在重正化方法(单谱化方法)的框架内描述了该算子谱的位置。在本研究中,我们首先确定了不同参数值下点谱的存在,然后研究了特征函数。为此,我们利用重正化方法的思想,研究通过傅立叶变换从原始算子得到的圆上差分算子。这使我们首先获得了保证点谱存在的新类型条件,其次详细描述了特征函数傅里叶变换的多尺度自相似结构。 doi 10.1134/s106192082403004x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Point Spectrum of a Non-Self-Adjoint Quasiperiodic Operator

We consider a difference operator acting in \(l^2(\mathbb Z)\) by the formula \(( \mathcal{A} \psi)_n=\psi_{n+1}+\psi_{n-1}+\lambda e^{-2\pi \mathrm{i} (\theta+\omega n)} \psi_n\), \(n\in \mathbb{Z}\), where \(\omega\in(0,1)\), \(\lambda>0\), and \(\theta\in [0,1]\) are parameters. This operator was introduced by P. Sarnak in 1982. For \(\omega\not\in \mathbb Q\), the operator \( \mathcal{A} \) is quasiperiodic. Previously, within the framework of a renormalization approach (monodromization method), we described the location of the spectrum of this operator. In the present work, we first establish the existence of the point spectrum for different values of parameters, and then study the eigenfunctions. To do so, using ideas of the renormalization approach, we study the difference operator on the circle obtained from the original one by the Fourier transform. This allows us, first, to obtain a new type condition guaranteeing the existence of point spectrum and, second, to describe in detail a multi-scale self-similar structure of the Fourier transforms of the eigenfunctions.

DOI 10.1134/S106192082403004X

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信