Tom Tirer;Raja Giryes;Se Young Chun;Yonina C. Eldar
{"title":"深度内部学习从单一输入进行深度学习","authors":"Tom Tirer;Raja Giryes;Se Young Chun;Yonina C. Eldar","doi":"10.1109/MSP.2024.3385950","DOIUrl":null,"url":null,"abstract":"Deep learning, in general, focuses on training a neural network from large labeled datasets. Yet, in many cases, there is value in training a network just from the input at hand. This is particularly relevant in many signal and image processing problems where training data are scarce and diversity is large on the one hand, and on the other, there is a lot of structure in the data that can be exploited. Using this information is the key to deep internal learning strategies, which may involve training a network from scratch using a single input or adapting an already trained network to a provided input example at inference time. This survey article aims at covering deep internal learning techniques that have been proposed in the past few years for these two important directions. While our main focus is on image processing problems, most of the approaches that we survey are derived for general signals (vectors with recurring patterns that can be distinguished from noise) and are therefore applicable to other modalities.","PeriodicalId":13246,"journal":{"name":"IEEE Signal Processing Magazine","volume":"41 4","pages":"40-57"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Internal Learning: Deep learning from a single input\",\"authors\":\"Tom Tirer;Raja Giryes;Se Young Chun;Yonina C. Eldar\",\"doi\":\"10.1109/MSP.2024.3385950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning, in general, focuses on training a neural network from large labeled datasets. Yet, in many cases, there is value in training a network just from the input at hand. This is particularly relevant in many signal and image processing problems where training data are scarce and diversity is large on the one hand, and on the other, there is a lot of structure in the data that can be exploited. Using this information is the key to deep internal learning strategies, which may involve training a network from scratch using a single input or adapting an already trained network to a provided input example at inference time. This survey article aims at covering deep internal learning techniques that have been proposed in the past few years for these two important directions. While our main focus is on image processing problems, most of the approaches that we survey are derived for general signals (vectors with recurring patterns that can be distinguished from noise) and are therefore applicable to other modalities.\",\"PeriodicalId\":13246,\"journal\":{\"name\":\"IEEE Signal Processing Magazine\",\"volume\":\"41 4\",\"pages\":\"40-57\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Magazine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714506/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Magazine","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714506/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Deep Internal Learning: Deep learning from a single input
Deep learning, in general, focuses on training a neural network from large labeled datasets. Yet, in many cases, there is value in training a network just from the input at hand. This is particularly relevant in many signal and image processing problems where training data are scarce and diversity is large on the one hand, and on the other, there is a lot of structure in the data that can be exploited. Using this information is the key to deep internal learning strategies, which may involve training a network from scratch using a single input or adapting an already trained network to a provided input example at inference time. This survey article aims at covering deep internal learning techniques that have been proposed in the past few years for these two important directions. While our main focus is on image processing problems, most of the approaches that we survey are derived for general signals (vectors with recurring patterns that can be distinguished from noise) and are therefore applicable to other modalities.
期刊介绍:
EEE Signal Processing Magazine is a publication that focuses on signal processing research and applications. It publishes tutorial-style articles, columns, and forums that cover a wide range of topics related to signal processing. The magazine aims to provide the research, educational, and professional communities with the latest technical developments, issues, and events in the field. It serves as the main communication platform for the society, addressing important matters that concern all members.