{"title":"使用混合卡拉祖巴乘法器的快速高效 191 位椭圆曲线加密处理器,适用于物联网应用","authors":"Sumit Singh Dhanda;Brahmjit Singh;Chia-Chen Lin;Poonam Jindal;Deepak Panwar;Tarun Kumar Sharma;Saurabh Agarwal;Wooguil Pak","doi":"10.1109/ACCESS.2024.3472650","DOIUrl":null,"url":null,"abstract":"The most widely used asymmetric cipher is ECC. It can be applied to IoT applications to offer various security services. However, a wide range of sectors have been investigated for applying ECC. The field of elliptic curve cryptographic processors for GF (2191) has received less attention. This study presents a low-resource, high-efficiency architecture for a 191-bit ECC processor. This design uses a novel hybrid Karatsuba multiplier for the multiplication of finite fields. For GF (2191), the Quad-Itoh-Tsuji algorithm has been altered to provide a small-size inversion unit. PlanAhead software synthesizes the CPU, which is then implemented on several Xilinx FPGAs. With savings in slice consumption ranging from 16 to 43 percent, the implemented design is the most restricted compared to the current designs. Compared to previously published designs, it is 3.8–1000 times faster. The elliptic curve scalar multiplication on the Virtex-7 FPGA is computed in \n<inline-formula> <tex-math>$7.24~\\mu $ </tex-math></inline-formula>\ns. Additionally, the proposed design achieves savings in area-time products of 77 to 90 percent. It may be beneficial for IoT edge devices. It utilizes 3120 mW of power for the operation. A state-of-the-art comparison based on the figure of merit (FoM) reveals that the proposed design outclasses the newest designs by a large margin. It also exhibits a throughput of 138.121 Kbps.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"144304-144315"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704632","citationCount":"0","resultStr":"{\"title\":\"A Fast and Efficient 191-bit Elliptic Curve Cryptographic Processor Using a Hybrid Karatsuba Multiplier for IoT Applications\",\"authors\":\"Sumit Singh Dhanda;Brahmjit Singh;Chia-Chen Lin;Poonam Jindal;Deepak Panwar;Tarun Kumar Sharma;Saurabh Agarwal;Wooguil Pak\",\"doi\":\"10.1109/ACCESS.2024.3472650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most widely used asymmetric cipher is ECC. It can be applied to IoT applications to offer various security services. However, a wide range of sectors have been investigated for applying ECC. The field of elliptic curve cryptographic processors for GF (2191) has received less attention. This study presents a low-resource, high-efficiency architecture for a 191-bit ECC processor. This design uses a novel hybrid Karatsuba multiplier for the multiplication of finite fields. For GF (2191), the Quad-Itoh-Tsuji algorithm has been altered to provide a small-size inversion unit. PlanAhead software synthesizes the CPU, which is then implemented on several Xilinx FPGAs. With savings in slice consumption ranging from 16 to 43 percent, the implemented design is the most restricted compared to the current designs. Compared to previously published designs, it is 3.8–1000 times faster. The elliptic curve scalar multiplication on the Virtex-7 FPGA is computed in \\n<inline-formula> <tex-math>$7.24~\\\\mu $ </tex-math></inline-formula>\\ns. Additionally, the proposed design achieves savings in area-time products of 77 to 90 percent. It may be beneficial for IoT edge devices. It utilizes 3120 mW of power for the operation. A state-of-the-art comparison based on the figure of merit (FoM) reveals that the proposed design outclasses the newest designs by a large margin. It also exhibits a throughput of 138.121 Kbps.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"144304-144315\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10704632\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704632/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10704632/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A Fast and Efficient 191-bit Elliptic Curve Cryptographic Processor Using a Hybrid Karatsuba Multiplier for IoT Applications
The most widely used asymmetric cipher is ECC. It can be applied to IoT applications to offer various security services. However, a wide range of sectors have been investigated for applying ECC. The field of elliptic curve cryptographic processors for GF (2191) has received less attention. This study presents a low-resource, high-efficiency architecture for a 191-bit ECC processor. This design uses a novel hybrid Karatsuba multiplier for the multiplication of finite fields. For GF (2191), the Quad-Itoh-Tsuji algorithm has been altered to provide a small-size inversion unit. PlanAhead software synthesizes the CPU, which is then implemented on several Xilinx FPGAs. With savings in slice consumption ranging from 16 to 43 percent, the implemented design is the most restricted compared to the current designs. Compared to previously published designs, it is 3.8–1000 times faster. The elliptic curve scalar multiplication on the Virtex-7 FPGA is computed in
$7.24~\mu $
s. Additionally, the proposed design achieves savings in area-time products of 77 to 90 percent. It may be beneficial for IoT edge devices. It utilizes 3120 mW of power for the operation. A state-of-the-art comparison based on the figure of merit (FoM) reveals that the proposed design outclasses the newest designs by a large margin. It also exhibits a throughput of 138.121 Kbps.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.