Miaomiao Lu, Yidan Jing, Tai Feng and Xiaomin Zhang*,
{"title":"将生物仿生学概念融入教学实验:制备和评估基于偶氮分子的聚合物薄膜","authors":"Miaomiao Lu, Yidan Jing, Tai Feng and Xiaomin Zhang*, ","doi":"10.1021/acs.jchemed.4c0018910.1021/acs.jchemed.4c00189","DOIUrl":null,"url":null,"abstract":"<p >A comprehensive teaching experiment plan tailored for third-year undergraduates has been developed. Initially, instructors synthesize (<i>E</i>)-2-(4-((4-(2-hydroxyethoxy)-3-methylphenyl)diazenyl)phenoxy)-ethan-1-ol(M-Azo-2) monomer as part of the preclass preparation. Subsequently, students perform an acylation reaction experiment to prepare an azobenzene derivative containing cross-linking points on both sides. This derivative is then combined with poly(ethylene glycol) dimethacrylate in the absence of external solvent under conditions conducive to radical polymerization, resulting in a thin film that exhibits light-wet dual-stimulation responsiveness. This process enables students to comprehend both the chemical reactivity and photoisomerization propensity of azobenzene to effectively bridge elements of organic chemistry and polymer chemistry. The experiment demonstrates three vivid and novel biomimetic phenomena: “color-changing flowers”, “phototropic seedlings”, and “mimosa”, which display photochromic, light-induced deformation, and humidity-responsive behavior of the film, respectively. This experiment enhances students’ appreciation for the application potential of biomimetic materials and fosters innovative scientific thinking.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"101 10","pages":"4298–4305 4298–4305"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating the Concept of Biomimetics into Teaching Experiments: Preparation and Evaluation of an Azo Molecule-Based Polymer Film\",\"authors\":\"Miaomiao Lu, Yidan Jing, Tai Feng and Xiaomin Zhang*, \",\"doi\":\"10.1021/acs.jchemed.4c0018910.1021/acs.jchemed.4c00189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A comprehensive teaching experiment plan tailored for third-year undergraduates has been developed. Initially, instructors synthesize (<i>E</i>)-2-(4-((4-(2-hydroxyethoxy)-3-methylphenyl)diazenyl)phenoxy)-ethan-1-ol(M-Azo-2) monomer as part of the preclass preparation. Subsequently, students perform an acylation reaction experiment to prepare an azobenzene derivative containing cross-linking points on both sides. This derivative is then combined with poly(ethylene glycol) dimethacrylate in the absence of external solvent under conditions conducive to radical polymerization, resulting in a thin film that exhibits light-wet dual-stimulation responsiveness. This process enables students to comprehend both the chemical reactivity and photoisomerization propensity of azobenzene to effectively bridge elements of organic chemistry and polymer chemistry. The experiment demonstrates three vivid and novel biomimetic phenomena: “color-changing flowers”, “phototropic seedlings”, and “mimosa”, which display photochromic, light-induced deformation, and humidity-responsive behavior of the film, respectively. This experiment enhances students’ appreciation for the application potential of biomimetic materials and fosters innovative scientific thinking.</p>\",\"PeriodicalId\":43,\"journal\":{\"name\":\"Journal of Chemical Education\",\"volume\":\"101 10\",\"pages\":\"4298–4305 4298–4305\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Education\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00189\",\"RegionNum\":3,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00189","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating the Concept of Biomimetics into Teaching Experiments: Preparation and Evaluation of an Azo Molecule-Based Polymer Film
A comprehensive teaching experiment plan tailored for third-year undergraduates has been developed. Initially, instructors synthesize (E)-2-(4-((4-(2-hydroxyethoxy)-3-methylphenyl)diazenyl)phenoxy)-ethan-1-ol(M-Azo-2) monomer as part of the preclass preparation. Subsequently, students perform an acylation reaction experiment to prepare an azobenzene derivative containing cross-linking points on both sides. This derivative is then combined with poly(ethylene glycol) dimethacrylate in the absence of external solvent under conditions conducive to radical polymerization, resulting in a thin film that exhibits light-wet dual-stimulation responsiveness. This process enables students to comprehend both the chemical reactivity and photoisomerization propensity of azobenzene to effectively bridge elements of organic chemistry and polymer chemistry. The experiment demonstrates three vivid and novel biomimetic phenomena: “color-changing flowers”, “phototropic seedlings”, and “mimosa”, which display photochromic, light-induced deformation, and humidity-responsive behavior of the film, respectively. This experiment enhances students’ appreciation for the application potential of biomimetic materials and fosters innovative scientific thinking.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.