{"title":"用于点云分析的三维定向编码","authors":"Yoonjae Jung;Sang-Hyun Lee;Seung-Woo Seo","doi":"10.1109/ACCESS.2024.3472301","DOIUrl":null,"url":null,"abstract":"Extracting informative local features in point clouds is crucial for accurately understanding spatial information inside 3D point data. Previous works utilize either complex network designs or simple multi-layer perceptrons (MLP) to extract the local features. However, complex networks often incur high computational cost, whereas simple MLP may struggle to capture the spatial relations among local points effectively. These challenges limit their scalability to delicate and real-time tasks, such as autonomous driving and robot navigation. To address these challenges, we propose a novel 3D Directional Encoding Network (3D-DENet) capable of effectively encoding spatial relations with low computational cost. 3D-DENet extracts spatial and point features separately. The key component of 3D-DENet for spatial feature extraction is Directional Encoding (DE), which encodes the cosine similarity between direction vectors of local points and trainable direction vectors. To extract point features, we also propose Local Point Feature Multi-Aggregation (LPFMA), which integrates various aspects of local point features using diverse aggregation functions. By leveraging DE and LPFMA in a hierarchical structure, 3D-DENet efficiently captures both detailed spatial and high-level semantic features from point clouds. Experiments show that 3D-DENet is effective and efficient in classification and segmentation tasks. In particular, 3D-DENet achieves an overall accuracy of 90.7% and a mean accuracy of 90.1% on ScanObjectNN, outperforming the current state-of-the-art method while using only 47% floating point operations.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"12 ","pages":"144533-144543"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703059","citationCount":"0","resultStr":"{\"title\":\"3D Directional Encoding for Point Cloud Analysis\",\"authors\":\"Yoonjae Jung;Sang-Hyun Lee;Seung-Woo Seo\",\"doi\":\"10.1109/ACCESS.2024.3472301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting informative local features in point clouds is crucial for accurately understanding spatial information inside 3D point data. Previous works utilize either complex network designs or simple multi-layer perceptrons (MLP) to extract the local features. However, complex networks often incur high computational cost, whereas simple MLP may struggle to capture the spatial relations among local points effectively. These challenges limit their scalability to delicate and real-time tasks, such as autonomous driving and robot navigation. To address these challenges, we propose a novel 3D Directional Encoding Network (3D-DENet) capable of effectively encoding spatial relations with low computational cost. 3D-DENet extracts spatial and point features separately. The key component of 3D-DENet for spatial feature extraction is Directional Encoding (DE), which encodes the cosine similarity between direction vectors of local points and trainable direction vectors. To extract point features, we also propose Local Point Feature Multi-Aggregation (LPFMA), which integrates various aspects of local point features using diverse aggregation functions. By leveraging DE and LPFMA in a hierarchical structure, 3D-DENet efficiently captures both detailed spatial and high-level semantic features from point clouds. Experiments show that 3D-DENet is effective and efficient in classification and segmentation tasks. In particular, 3D-DENet achieves an overall accuracy of 90.7% and a mean accuracy of 90.1% on ScanObjectNN, outperforming the current state-of-the-art method while using only 47% floating point operations.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":\"12 \",\"pages\":\"144533-144543\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10703059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10703059/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10703059/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Extracting informative local features in point clouds is crucial for accurately understanding spatial information inside 3D point data. Previous works utilize either complex network designs or simple multi-layer perceptrons (MLP) to extract the local features. However, complex networks often incur high computational cost, whereas simple MLP may struggle to capture the spatial relations among local points effectively. These challenges limit their scalability to delicate and real-time tasks, such as autonomous driving and robot navigation. To address these challenges, we propose a novel 3D Directional Encoding Network (3D-DENet) capable of effectively encoding spatial relations with low computational cost. 3D-DENet extracts spatial and point features separately. The key component of 3D-DENet for spatial feature extraction is Directional Encoding (DE), which encodes the cosine similarity between direction vectors of local points and trainable direction vectors. To extract point features, we also propose Local Point Feature Multi-Aggregation (LPFMA), which integrates various aspects of local point features using diverse aggregation functions. By leveraging DE and LPFMA in a hierarchical structure, 3D-DENet efficiently captures both detailed spatial and high-level semantic features from point clouds. Experiments show that 3D-DENet is effective and efficient in classification and segmentation tasks. In particular, 3D-DENet achieves an overall accuracy of 90.7% and a mean accuracy of 90.1% on ScanObjectNN, outperforming the current state-of-the-art method while using only 47% floating point operations.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.