智能变异过滤--基于大规模并行测序的变异分析蓝图解决方案。

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Orlinda Brahimllari, Sandra Eloranta, Patrik Georgii-Hemming, Zahra Haider, Sabine Koch, Aleksandra Krstic, Frantzeska Papadopoulou Skarp, Richard Rosenquist, Karin E Smedby, Fulya Taylan, Birna Thorvaldsdottir, Valtteri Wirta, Tove Wästerlid, Magnus Boman
{"title":"智能变异过滤--基于大规模并行测序的变异分析蓝图解决方案。","authors":"Orlinda Brahimllari, Sandra Eloranta, Patrik Georgii-Hemming, Zahra Haider, Sabine Koch, Aleksandra Krstic, Frantzeska Papadopoulou Skarp, Richard Rosenquist, Karin E Smedby, Fulya Taylan, Birna Thorvaldsdottir, Valtteri Wirta, Tove Wästerlid, Magnus Boman","doi":"10.1177/14604582241290725","DOIUrl":null,"url":null,"abstract":"<p><p>Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. <b>Objective:</b> The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. <b>Methods:</b> A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. <b>Results:</b> The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. <b>Conclusion:</b> An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"30 4","pages":"14604582241290725"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart variant filtering - A blueprint solution for massively parallel sequencing-based variant analysis.\",\"authors\":\"Orlinda Brahimllari, Sandra Eloranta, Patrik Georgii-Hemming, Zahra Haider, Sabine Koch, Aleksandra Krstic, Frantzeska Papadopoulou Skarp, Richard Rosenquist, Karin E Smedby, Fulya Taylan, Birna Thorvaldsdottir, Valtteri Wirta, Tove Wästerlid, Magnus Boman\",\"doi\":\"10.1177/14604582241290725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. <b>Objective:</b> The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. <b>Methods:</b> A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. <b>Results:</b> The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. <b>Conclusion:</b> An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.</p>\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"30 4\",\"pages\":\"14604582241290725\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241290725\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241290725","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

大规模并行测序有助于创造关于基因、变异及其与疾病表型的关联的新知识。这一重要的技术进步同时也使利用基因组信息为癌症患者做出临床决策变得更加复杂。目前,鉴定具有诊断、预后或预测作用的可操作致病变异需要大量的人工工作。目的是什么?目的是设计一种淋巴瘤临床诊断解决方案,特别是用于系统性变异筛选和解读。方法:以范围审查和专家论证为基础,为基于大规模并行测序的基因诊断设计解决方案蓝图。结果:该解决方案利用机器学习方法促进诊断过程中的决策制定。与专家进行的一轮验证访谈巩固了该蓝图,并将其固定在所有相关的专家学科中。范围审查确定了变异过滤解决方案的四个组成部分:算法和人工智能(AI)应用、软件、生物信息学管道和变异过滤策略。蓝图描述了输入、人工智能模型和动态浏览界面。结论为预测致病变异体设计了一个人工智能增强系统。虽然这种系统可用于对已识别的变异体进行分类,但诊断人员仍应评估分类的准确性,必要时进行修正,并最终决定哪些变异体是真正致病的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart variant filtering - A blueprint solution for massively parallel sequencing-based variant analysis.

Massively parallel sequencing helps create new knowledge on genes, variants and their association with disease phenotype. This important technological advancement simultaneously makes clinical decision making, using genomic information for cancer patients, more complex. Currently, identifying actionable pathogenic variants with diagnostic, prognostic, or predictive impact requires substantial manual effort. Objective: The purpose is to design a solution for clinical diagnostics of lymphoma, specifically for systematic variant filtering and interpretation. Methods: A scoping review and demonstrations from specialists serve as a basis for a blueprint of a solution for massively parallel sequencing-based genetic diagnostics. Results: The solution uses machine learning methods to facilitate decision making in the diagnostic process. A validation round of interviews with specialists consolidated the blueprint and anchored it across all relevant expert disciplines. The scoping review identified four components of variant filtering solutions: algorithms and Artificial Intelligence (AI) applications, software, bioinformatics pipelines and variant filtering strategies. The blueprint describes the input, the AI model and the interface for dynamic browsing. Conclusion: An AI-augmented system is designed for predicting pathogenic variants. While such a system can be used to classify identified variants, diagnosticians should still evaluate the classification's accuracy, make corrections when necessary, and ultimately decide which variants are truly pathogenic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信