Ya Li;Xuecong Zheng;Jiaping Li;Qingyun Dai;Chang-Dong Wang;Min Chen
{"title":"LKAN:基于 LLM 的肝癌临床分期知识感知注意力网络。","authors":"Ya Li;Xuecong Zheng;Jiaping Li;Qingyun Dai;Chang-Dong Wang;Min Chen","doi":"10.1109/JBHI.2024.3478809","DOIUrl":null,"url":null,"abstract":"Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"29 4","pages":"3007-3020"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer\",\"authors\":\"Ya Li;Xuecong Zheng;Jiaping Li;Qingyun Dai;Chang-Dong Wang;Min Chen\",\"doi\":\"10.1109/JBHI.2024.3478809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.\",\"PeriodicalId\":13073,\"journal\":{\"name\":\"IEEE Journal of Biomedical and Health Informatics\",\"volume\":\"29 4\",\"pages\":\"3007-3020\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Biomedical and Health Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713996/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713996/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LKAN: LLM-Based Knowledge-Aware Attention Network for Clinical Staging of Liver Cancer
Clinical staging of liver cancer (CSoLC), an important indicator for evaluating primary liver cancer (PLC), is key in the diagnosis, treatment, and rehabilitation of liver cancer. In China, the current CSoLC adopts the China liver cancer (CNLC) staging, which is usually evaluated by clinicians based on radiology reports. Therefore, inferring clinical information from unstructured radiology reports can provide auxiliary decision support for clinicians. The key to solving the challenging task is to guide the model to pay attention to the staging-related words or sentences, and the following issues may occur: 1) Imbalanced categories: Early- and mid-stage liver cancer symptoms are subtle, resulting in more data in the end-stage. 2) Domain sensitivity of liver cancer data: The liver cancer dataset contains substantial domain knowledge, leading to out-of-vocabulary issues and reduced classification accuracy. 3) Free-text and lengthy report: Radiology reports sparsely describe various lesions using domain-specific terms, making it hard to mine staging-related information. To address these, this article proposes a large language model (LLM)-based Knowledge-aware Attention Network (LKAN) for CSoLC. First, for maintaining semantic consistency, LLM and a rule-based algorithm are integrated to generate more diverse and reasonable data. Second, an unlabeled radiology corpus is pre-trained to introduce domain knowledge for subsequent representation learning. Third, attention is improved by incorporating both global and local features to guide the model's focus on staging-relevant information. Compared with the baseline models, LKAN has achieved the best results with 90.3% Accuracy, 90.0% Macro_F1 score, and 90.0% Macro_Recall.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.