Heather Walker, Scott Day, Christopher H Grant, Catrin Jones, Robert Ker, Michael K Sullivan, Bhautesh Dinesh Jani, Katie Gallacher, Patrick B Mark
{"title":"肾衰竭预后预测模型的开发和验证中多病和虚弱的表现:系统性综述。","authors":"Heather Walker, Scott Day, Christopher H Grant, Catrin Jones, Robert Ker, Michael K Sullivan, Bhautesh Dinesh Jani, Katie Gallacher, Patrick B Mark","doi":"10.1186/s12916-024-03649-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prognostic models that identify individuals with chronic kidney disease (CKD) at greatest risk of developing kidney failure help clinicians to make decisions and deliver precision medicine. It is recognised that people with CKD usually have multiple long-term health conditions (multimorbidity) and often experience frailty. We undertook a systematic review to evaluate the representation and consideration of multimorbidity and frailty within CKD cohorts used to develop and/or validate prognostic models assessing the risk of kidney failure.</p><p><strong>Methods: </strong>We identified studies that described derivation, validation or update of kidney failure prognostic models in MEDLINE, CINAHL Plus and the Cochrane Library-CENTRAL. The primary outcome was representation of multimorbidity or frailty. The secondary outcome was predictive accuracy of identified models in relation to presence of multimorbidity or frailty.</p><p><strong>Results: </strong>Ninety-seven studies reporting 121 different kidney failure prognostic models were identified. Two studies reported prevalence of multimorbidity and a single study reported prevalence of frailty. The rates of specific comorbidities were reported in a greater proportion of studies: 67.0% reported baseline data on diabetes, 54.6% reported hypertension and 39.2% reported cardiovascular disease. No studies included frailty in model development, and only one study considered multimorbidity as a predictor variable. No studies assessed model performance in populations in relation to multimorbidity. A single study assessed associations between frailty and the risks of kidney failure and death.</p><p><strong>Conclusions: </strong>There is a paucity of kidney failure risk prediction models that consider the impact of multimorbidity and/or frailty, resulting in a lack of clear evidence-based practice for multimorbid or frail individuals. These knowledge gaps should be explored to help clinicians know whether these models can be used for CKD patients who experience multimorbidity and/or frailty.</p><p><strong>Systematic review registration: </strong>This review has been registered on PROSPERO (CRD42022347295).</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"22 1","pages":"452"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470573/pdf/","citationCount":"0","resultStr":"{\"title\":\"Representation of multimorbidity and frailty in the development and validation of kidney failure prognostic prediction models: a systematic review.\",\"authors\":\"Heather Walker, Scott Day, Christopher H Grant, Catrin Jones, Robert Ker, Michael K Sullivan, Bhautesh Dinesh Jani, Katie Gallacher, Patrick B Mark\",\"doi\":\"10.1186/s12916-024-03649-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Prognostic models that identify individuals with chronic kidney disease (CKD) at greatest risk of developing kidney failure help clinicians to make decisions and deliver precision medicine. It is recognised that people with CKD usually have multiple long-term health conditions (multimorbidity) and often experience frailty. We undertook a systematic review to evaluate the representation and consideration of multimorbidity and frailty within CKD cohorts used to develop and/or validate prognostic models assessing the risk of kidney failure.</p><p><strong>Methods: </strong>We identified studies that described derivation, validation or update of kidney failure prognostic models in MEDLINE, CINAHL Plus and the Cochrane Library-CENTRAL. The primary outcome was representation of multimorbidity or frailty. The secondary outcome was predictive accuracy of identified models in relation to presence of multimorbidity or frailty.</p><p><strong>Results: </strong>Ninety-seven studies reporting 121 different kidney failure prognostic models were identified. Two studies reported prevalence of multimorbidity and a single study reported prevalence of frailty. The rates of specific comorbidities were reported in a greater proportion of studies: 67.0% reported baseline data on diabetes, 54.6% reported hypertension and 39.2% reported cardiovascular disease. No studies included frailty in model development, and only one study considered multimorbidity as a predictor variable. No studies assessed model performance in populations in relation to multimorbidity. A single study assessed associations between frailty and the risks of kidney failure and death.</p><p><strong>Conclusions: </strong>There is a paucity of kidney failure risk prediction models that consider the impact of multimorbidity and/or frailty, resulting in a lack of clear evidence-based practice for multimorbid or frail individuals. These knowledge gaps should be explored to help clinicians know whether these models can be used for CKD patients who experience multimorbidity and/or frailty.</p><p><strong>Systematic review registration: </strong>This review has been registered on PROSPERO (CRD42022347295).</p>\",\"PeriodicalId\":9188,\"journal\":{\"name\":\"BMC Medicine\",\"volume\":\"22 1\",\"pages\":\"452\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11470573/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12916-024-03649-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-024-03649-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Representation of multimorbidity and frailty in the development and validation of kidney failure prognostic prediction models: a systematic review.
Background: Prognostic models that identify individuals with chronic kidney disease (CKD) at greatest risk of developing kidney failure help clinicians to make decisions and deliver precision medicine. It is recognised that people with CKD usually have multiple long-term health conditions (multimorbidity) and often experience frailty. We undertook a systematic review to evaluate the representation and consideration of multimorbidity and frailty within CKD cohorts used to develop and/or validate prognostic models assessing the risk of kidney failure.
Methods: We identified studies that described derivation, validation or update of kidney failure prognostic models in MEDLINE, CINAHL Plus and the Cochrane Library-CENTRAL. The primary outcome was representation of multimorbidity or frailty. The secondary outcome was predictive accuracy of identified models in relation to presence of multimorbidity or frailty.
Results: Ninety-seven studies reporting 121 different kidney failure prognostic models were identified. Two studies reported prevalence of multimorbidity and a single study reported prevalence of frailty. The rates of specific comorbidities were reported in a greater proportion of studies: 67.0% reported baseline data on diabetes, 54.6% reported hypertension and 39.2% reported cardiovascular disease. No studies included frailty in model development, and only one study considered multimorbidity as a predictor variable. No studies assessed model performance in populations in relation to multimorbidity. A single study assessed associations between frailty and the risks of kidney failure and death.
Conclusions: There is a paucity of kidney failure risk prediction models that consider the impact of multimorbidity and/or frailty, resulting in a lack of clear evidence-based practice for multimorbid or frail individuals. These knowledge gaps should be explored to help clinicians know whether these models can be used for CKD patients who experience multimorbidity and/or frailty.
Systematic review registration: This review has been registered on PROSPERO (CRD42022347295).
期刊介绍:
BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.