未纠缠与纠缠状态交叉时的聚合物协同动力学:聚乙烯熔体的散射和线性剪切松弛的理论预测

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
M. G. Guenza
{"title":"未纠缠与纠缠状态交叉时的聚合物协同动力学:聚乙烯熔体的散射和线性剪切松弛的理论预测","authors":"M. G. Guenza","doi":"10.1021/acs.macromol.4c01442","DOIUrl":null,"url":null,"abstract":"The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (<i>J. Chem. Phys.</i> <b>1999</b>, <i>110</i>, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.105em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.026em, 1001.88em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.185em, 1000.91em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\"><span><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.526em, 1000.91em, 3.923em, -999.997em); top: -4.599em; left: 0.912em;\"><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0.628em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.173em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.401em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></script> other chains, with <i>N</i> the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"9 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Polymer Dynamics at the Crossover between the Unentangled and the Entangled Regimes: Theoretical Predictions of Scattering and Linear Shear Relaxation for Polyethylene Melts\",\"authors\":\"M. G. Guenza\",\"doi\":\"10.1021/acs.macromol.4c01442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (<i>J. Chem. Phys.</i> <b>1999</b>, <i>110</i>, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 2.105em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.878em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.026em, 1001.88em, 2.616em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.878em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.185em, 1000.91em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\\\"><span><span><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝑁<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\\\"></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.526em, 1000.91em, 3.923em, -999.997em); top: -4.599em; left: 0.912em;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px;\\\"><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0.628em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.173em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.401em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">√</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></script> other chains, with <i>N</i> the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01442\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01442","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文通过对合作动力学广义朗格文方程 (Cooperative Dynamics Generalized Langevin Equation, CDGLE) (J. Chem. Phys. 1999, 110, 7574) 的扩展,通过限制链运动的有效单体间势能,将缠结导致的动力学约束条件正式化。当熔体中的一条聚合物链与𝑁⎯⎯⎯⎯√NN 条其他链互穿(N 为链的聚合度)时,它们的动力学通过平均力势耦合,导致链的协同运动和质量中心亚扩散动力学。当聚合度增加时,扩展 CDGLE 方法可以描述从无缠结到弱缠结系统的协同动力学行为。通过将 CDGLE 与聚乙烯熔体的中子自旋回波(NSE)实验数据进行直接比较,我们发现纠缠系统中的协同动力学被限制在纠缠所限定的区域内。我们扩展了 CDGLE 来描述线性动态力学测量,并用它来计算 NSE 研究的聚乙烯样品的剪切弛豫。我们讨论了剪切松弛中合作动力学、局部柔性和缠结的影响。值得注意的是,该理论方法精确地描述了链长不断增加的聚乙烯熔体从无缠结动态到全局缠结动态的交叉,用一种方法涵盖了无缠结动态和弱缠结(最多 12 个缠结)动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cooperative Polymer Dynamics at the Crossover between the Unentangled and the Entangled Regimes: Theoretical Predictions of Scattering and Linear Shear Relaxation for Polyethylene Melts

Cooperative Polymer Dynamics at the Crossover between the Unentangled and the Entangled Regimes: Theoretical Predictions of Scattering and Linear Shear Relaxation for Polyethylene Melts
The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (J. Chem. Phys. 1999, 110, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a N other chains, with N the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信