{"title":"未纠缠与纠缠状态交叉时的聚合物协同动力学:聚乙烯熔体的散射和线性剪切松弛的理论预测","authors":"M. G. Guenza","doi":"10.1021/acs.macromol.4c01442","DOIUrl":null,"url":null,"abstract":"The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (<i>J. Chem. Phys.</i> <b>1999</b>, <i>110</i>, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a <i></i><span style=\"color: inherit;\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math>' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.105em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.026em, 1001.88em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.878em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.185em, 1000.91em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\"><span><span><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑁<span style=\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\"></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(3.526em, 1000.91em, 3.923em, -999.997em); top: -4.599em; left: 0.912em;\"><span style=\"display: inline-block; position: relative; width: 0.912em; height: 0px;\"><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0.628em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.173em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.401em;\">⎯<span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">√</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></script> other chains, with <i>N</i> the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"9 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Polymer Dynamics at the Crossover between the Unentangled and the Entangled Regimes: Theoretical Predictions of Scattering and Linear Shear Relaxation for Polyethylene Melts\",\"authors\":\"M. G. Guenza\",\"doi\":\"10.1021/acs.macromol.4c01442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (<i>J. Chem. Phys.</i> <b>1999</b>, <i>110</i>, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a <i></i><span style=\\\"color: inherit;\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math>' role=\\\"presentation\\\" style=\\\"position: relative;\\\" tabindex=\\\"0\\\"><nobr aria-hidden=\\\"true\\\"><span style=\\\"width: 2.105em; display: inline-block;\\\"><span style=\\\"display: inline-block; position: relative; width: 1.878em; height: 0px; font-size: 110%;\\\"><span style=\\\"position: absolute; clip: rect(1.026em, 1001.88em, 2.616em, -999.997em); top: -2.156em; left: 0em;\\\"><span><span><span style=\\\"display: inline-block; position: relative; width: 1.878em; height: 0px;\\\"><span style=\\\"position: absolute; clip: rect(3.185em, 1000.91em, 4.151em, -999.997em); top: -3.974em; left: 0.912em;\\\"><span><span><span style=\\\"font-family: STIXMathJax_Normal-italic;\\\">𝑁<span style=\\\"display: inline-block; overflow: hidden; height: 1px; width: 0.06em;\\\"></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(3.526em, 1000.91em, 3.923em, -999.997em); top: -4.599em; left: 0.912em;\\\"><span style=\\\"display: inline-block; position: relative; width: 0.912em; height: 0px;\\\"><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; font-family: STIXMathJax_Symbols; top: -3.974em; left: 0.628em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.173em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"font-family: STIXMathJax_Symbols; position: absolute; top: -3.974em; left: 0.401em;\\\">⎯<span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span><span style=\\\"position: absolute; clip: rect(2.844em, 1000.97em, 4.435em, -999.997em); top: -3.974em; left: 0em;\\\"><span style=\\\"font-family: STIXMathJax_Main;\\\">√</span><span style=\\\"display: inline-block; width: 0px; height: 3.98em;\\\"></span></span></span></span></span><span style=\\\"display: inline-block; width: 0px; height: 2.162em;\\\"></span></span></span><span style=\\\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.503em;\\\"></span></span></nobr><span role=\\\"presentation\\\"><math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span></span><script type=\\\"math/mml\\\"><math display=\\\"inline\\\"><msqrt><mrow><mi>N</mi></mrow></msqrt></math></script> other chains, with <i>N</i> the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.macromol.4c01442\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01442","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Cooperative Polymer Dynamics at the Crossover between the Unentangled and the Entangled Regimes: Theoretical Predictions of Scattering and Linear Shear Relaxation for Polyethylene Melts
The dynamics of polymer melts at the crossover between unentangled and entangled regimes is formalized here through an extension of the Cooperative Dynamics Generalized Langevin Equation (CDGLE) (J. Chem. Phys.1999, 110, 7574), by including the constraint to the dynamics due to entanglements through an effective intermonomer potential that confines the motion of the chains. As one polymer chain in a melt interpenetrates with a 𝑁⎯⎯⎯⎯√ other chains, with N the degree of chain polymerization, their dynamics is coupled through their potential of mean-force, leading to chains’ cooperative motion and center-of-mass subdiffusive dynamics. When increasing the degree of polymerization, the extended CDGLE approach describes the dynamical behavior of unentangled to weakly entangled systems undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled and weakly entangled (up to 12 entanglements) dynamics in one approach.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.